Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale Adv ; 6(11): 2903-2918, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38817437

RESUMEN

A series of exchange-coupled magnetic nanoparticles combining several magnetic phases in an onion-type structure were synthesized by performing a three-step seed-mediated growth process. Iron and cobalt precursors were alternatively decomposed in high-boiling-temperature solvents (288-310 °C) to successively grow CoO and Fe3-δO4 shells (the latter in three stages) on the surface of Fe3-δO4 seeds. The structure and chemical composition of these nanoparticles were investigated in depth by combining a wide panel of advanced techniques, such as scanning transmission electron microscopy (STEM), electron energy-loss spectroscopy-spectrum imaging (EELS-SI), 57Fe Mössbauer spectrometry, and X-ray circular magnetic dichroism (XMCD) techniques. The size of the nanoparticles increased progressively after each thermal decomposition step, but the crystal structure of core-shell nanoparticles was significantly modified during the growth of the second shell. Indeed, the antiferromagnetic CoO phase was progressively replaced by the CoFe2O4 ferrimagnet due to the concomitant processes of partial solubilization/crystallization and the interfacial cationic diffusion of iron. A much more complex chemical structure than that suggested by a simple size variation of the nanoparticles is thus proposed, namely Fe3-δO4@CoO-CoFe2O4@Fe3-δO4, where an intermediate Co-based layer was shown to progressively become a single, hybrid magnetic phase (attributed to proximity effects) with a reduction in the CoO amount. In turn, the dual exchange-coupling of this hybrid Co-based intermediate layer (with high anisotropy and ordering temperature) with the surrounding ferrite (core and outer shells) stabilized the particle moment well above room temperature. These effects allow for the production of Fe oxide-based magnetic nanoparticles with high effective anisotropy, thus revealing the potential of this strategy to design rare-earth-free permanent nanomagnets at room temperature.

2.
Nanoscale Adv ; 5(16): 4213-4223, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37560422

RESUMEN

Magnetite, a ubiquitous mineral in natural systems, is of high interest for a variety of applications including environmental remediation, medicine, and catalysis. If the transformation of magnetite to maghemite through the oxidation of Fe2+ has been well documented, mechanisms involving dissolution processes of Fe2+ in aqueous solutions have been overlooked. Here, the effect of dissolved organic ligands (EDTA (ethylenediaminetetraacetic acid), acetic, lactic and citric acids) on Fe2+ solubility and on the stoichiometry (Fe(ii)/Fe(iii)) of magnetite-maghemite nanoparticles (∼10 nm) was investigated. These ligands were chosen because of their environmental relevance and because they are widely used as coating agents for nanotechnology applications. Results show an insignificant effect of 2 organic ligands (acetate and lactate) on the dissolution of Fe. By contrast, citrate and EDTA enhanced Fe solubility because of the formation of dissolved Fe(ii)- and Fe(iii)-ligand complexes. Both ligands selectively bound Fe(ii) over Fe(iii), but EDTA was much more selective than citrate. The combined effects of oxidation and H+- and ligand-promoted dissolution of Fe from magnetite were predicted using a magnetite-maghemite solid solution model, accounting for the formation of dissolved Fe(ii)- and Fe(iii)-ligand complexes. Therefore, these results show that citrate and EDTA (i) enhance Fe solubility in the presence of magnetite nanoparticles and (ii) modify magnetite stoichiometry, which affects its environmental behavior and its properties for nanotechnology applications.

3.
Inorg Chem ; 61(42): 16929-16935, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36214839

RESUMEN

The B-site Fe/Os ordered and disordered quadruple perovskite oxides CaCu3Fe2Os2O12 were synthesized under different high-pressure and high-temperature conditions. The B-site ordered CaCu3Fe2Os2O12 is a system with a very high ferrimagnetic ordering temperature of 580 K having the Cu2+(↑)Fe3+(↑)Os5+(↓) charge and spin arrangement. In comparison, the highly disordered CaCu3Fe2Os2O12 has a reduced magnetic transition temperature of about 350 K. The Cu2+Fe3+Os5+ charge combination remains the same without any sign of changes in the valence state of the constituent ions. Although the average net moments of each sublattice are reduced, the average ferrimagnetic spin arrangement is unaltered. The robustness of the basic magnetic properties of CaCu3Fe2Os2O12 against site disorder may be taken as an indication of the tendency to maintain the short-range order of the atomic constituents.

4.
Adv Mater ; 34(49): e2206688, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36177716

RESUMEN

Recent theory and experiments have showcased how to harness quantum mechanics to assemble heat/information engines with efficiencies that surpass the classical Carnot limit. So far, this has required atomic engines that are driven by cumbersome external electromagnetic sources. Here, using molecular spintronics, an implementation that is both electronic and autonomous is proposed. The spintronic quantum engine heuristically deploys several known quantum assets by having a chain of spin qubits formed by the paramagnetic Co center of phthalocyanine (Pc) molecules electronically interact with electron-spin-selecting Fe/C60 interfaces. Density functional calculations reveal that transport fluctuations across the interface can stabilize spin coherence on the Co paramagnetic centers, which host spin flip processes. Across vertical molecular nanodevices, enduring dc current generation, output power above room temperature, two quantum thermodynamical signatures of the engine's processes, and a record 89% spin polarization of current across the Fe/C60 interface are measured. It is crucially this electron spin selection that forces, through demonic feedback and control, charge current to flow against the built-in potential barrier. Further research into spintronic quantum engines, insight into the quantum information processes within spintronic technologies, and retooling the spintronic-based information technology chain, can help accelerate the transition to clean energy.

5.
Inorg Chem ; 60(9): 6298-6305, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33848160

RESUMEN

B-site Os-doped quadruple perovskite oxides LaCu3Fe4-xOsxO12 (x = 1 and 2) were prepared under high-pressure and high-temperature conditions. Although parent compound LaCu3Fe4O12 experiences Cu-Fe intermetallic charge transfer that changes the Cu3+/Fe3+ charge combination to Cu2+/Fe3.75+ at 393 K, in the Os-doped samples, the Cu and Fe charge states are found to be constant 2+ and 3+, respectively, indicating the complete suppression of charge transfer. Correspondingly, Os6+ and mixed Os4.5+ valence states are determined by X-ray absorption spectroscopy for x = 1 and x = 2 compositions, respectively. The x = 1 sample crystallizes in an Fe/Os disordered structure with the Im3̅ space group. It experiences a spin-glass transition around 480 K. With further Os substitution up to x = 2, the crystal symmetry changes to Pn3̅, where Fe and Os are orderly distributed in a rocksalt-type fashion at the B site. Moreover, this composition shows a long-range Cu2+(↑)Fe3+(↑)Os4.5+(↓) ferrimagnetic ordering near 520 K. This work provides a rare example for 5d substitution-suppressed intermetallic charge transfer as well as induced structural and magnetic phase transitions with high spin ordering temperature.

6.
Adv Sci (Weinh) ; 8(5): 2000777, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33717832

RESUMEN

Tremendous progress in the development of single molecule magnets (SMMs) raises the question of their device integration. On this route, understanding the properties of low-dimensional assemblies of SMMs, in particular in contact with electrodes, is a necessary but difficult step. Here, it is shown that fullerene SMM self-assembled on metal substrate from solution retains magnetic hysteresis up to 10 K. Fullerene-SMM DySc2N@C80 and Dy2ScN@C80 are derivatized to introduce a thioacetate group, which is used to graft SMMs on gold. Magnetic properties of grafted SMMs are studied by X-ray magnetic circular dichroism and compared to the films of nonderivatized fullerenes prepared by sublimation. In self-assembled films, the magnetic moments of the Dy ions are preferentially aligned parallel to the surface, which is different from the disordered orientation of endohedral clusters in nonfunctionalized fullerenes. Whereas chemical derivatization reduces the blocking temperature of magnetization and narrows the hysteresis of Dy2ScN@C80, for DySc2N@C80 equally broad hysteresis is observed as in the fullerene multilayer. Magnetic bistability in the DySc2N@C80 grafted on gold is sustained up to 10 K. This study demonstrates that self-assembly of fullerene-SMM derivatives offers a facile solution-based procedure for the preparation of functional magnetic sub-monolayers with excellent SMM performance.

7.
ACS Appl Mater Interfaces ; 13(14): 16784-16800, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33780236

RESUMEN

Nanoparticles that combine several magnetic phases offer wide perspectives for cutting edge applications because of the high modularity of their magnetic properties. Besides the addition of the magnetic characteristics intrinsic to each phase, the interface that results from core-shell and, further, from onion structures leads to synergistic properties such as magnetic exchange coupling. Such a phenomenon is of high interest to overcome the superparamagnetic limit of iron oxide nanoparticles which hampers potential applications such as data storage or sensors. In this manuscript, we report on the design of nanoparticles with an onion-like structure which has been scarcely reported yet. These nanoparticles consist of a Fe3-δO4 core covered by a first shell of CoFe2O4 and a second shell of Fe3-δO4, e.g., a Fe3-δO4@CoFe2O4@Fe3-δO4 onion-like structure. They were synthesized through a multistep seed-mediated growth approach which consists consists in performing three successive thermal decomposition of metal complexes in a high-boiling-point solvent (about 300 °C). Although TEM micrographs clearly show the growth of each shell from the iron oxide core, core sizes and shell thicknesses markedly differ from what is suggested by the size increasing. We investigated very precisely the structure of nanoparticles in performing high resolution (scanning) TEM imaging and geometrical phase analysis (GPA). The chemical composition and spatial distribution of atoms were studied by electron energy loss spectroscopy (EELS) mapping and spectroscopy. The chemical environment and oxidation state of cations were investigated by 57Fe Mössbauer spectrometry, soft X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD). The combination of these techniques allowed us to estimate the increase of Fe2+ content in the iron oxide core of the core@shell structure and the increase of the cobalt ferrite shell thickness in the core@shell@shell one, whereas the iron oxide shell appears to be much thinner than expected. Thus, the modification of the chemical composition as well as the size of the Fe3-δO4 core and the thickness of the cobalt ferrite shell have a high impact on the magnetic properties. Furthermore, the growth of the iron oxide shell also markedly modifies the magnetic properties of the core-shell nanoparticles, thus demonstrating the high potential of onion-like nanoparticles to accurately tune the magnetic properties of nanoparticles according to the desired applications.

8.
Nanoscale ; 12(20): 11222-11231, 2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32412032

RESUMEN

Fluids responding to magnetic fields (ferrofluids) offer a scene with no equivalent in nature to explore long-range magnetic dipole interactions. Here, we studied the very original class of binary ferrofluids, embedding soft and hard ferrimagnetic nanoparticles. We used a combination of X-ray magnetic spectroscopy measurements supported by multi-scale experimental techniques and Monte-Carlo simulations to unveil the origin of the emergent macroscopic magnetic properties of the binary mixture. We found that the association of soft and hard magnetic nanoparticles in the fluid has a considerable influence on their inherent magnetic properties. While the ferrofluid remains in a single phase, magnetic interactions at the nanoscale between both types of particles induce a modification of their respective coercive fields. By connecting the microscopic properties of binary ferrofluids containing small particles, our findings lay the groundwork for the manipulation of magnetic interactions between particles at the nanometer scale in magnetic liquids.

9.
Nat Nanotechnol ; 15(1): 18-21, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31873288

RESUMEN

Molecular spin switches are attractive candidates for controlling the spin polarization developing at the interface between molecules and magnetic metal surfaces1,2, which is relevant for molecular spintronics devices3-5. However, so far, intrinsic spin switches such as spin-crossover complexes have suffered from fragmentation or loss of functionality following adsorption on metal surfaces, with rare exceptions6-9. Robust metal-organic platforms, on the other hand, rely on external axial ligands to induce spin switching10-14. Here we integrate a spin switching functionality into robust complexes, relying on the mechanical movement of an axial ligand strapped to the porphyrin ring. Reversible interlocked switching of spin and coordination, induced by electron injection, is demonstrated on Ag(111) for this class of compounds. The stability of the two spin and coordination states of the molecules exceeds days at 4 K. The potential applications of this switching concept go beyond the spin functionality, and may turn out to be useful for controlling the catalytic activity of surfaces15.

10.
ACS Omega ; 4(3): 5076-5082, 2019 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-31459685

RESUMEN

Metal-phthalocyanines are quasi-planar heterocyclic macrocycle molecules with a highly conjugated structure. They can be engineered at the molecular scale (central atom, ligand) to tailor new properties for organic spintronics devices. In this study, we evaluated the magnetic behavior of FePc in a ∼1 nm molecular film sandwiched between two ferromagnetic films: cobalt (bottom) and nickel (top). In the single interface, FePc in contact with a Co film is magnetically coupled with the inorganic film magnetization, though the relatively small Fe(Pc) X-ray magnetic circular dichroism (XMCD) signal in remanence, with respect to that observed in applied field of 6 T, suggests that a fraction of molecules in the organometallic film have their magnetic moment not aligned or antiparallel with respect to Co. When in contact with two interfaces, Fe(Pc) XMCD doubles, indicating that part of the Fe(Pc) are now aligned with the Ni topmost layer, saturated at 1 T. We discussed the relevance of the finding in terms of understanding and developing hybrid organic/inorganic spin devices.

11.
Nanoscale ; 11(27): 12946-12958, 2019 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-31259329

RESUMEN

Exchange coupled core-shell nanoparticles present high potential to tune adequately the magnetic properties for specific applications such as nanomedicine or spintronics. Here, we report on the design of core-shell nanoparticles by performing the successive thermal decomposition of Fe and Co complexes. Depending on the thermal stability and the concentration of the Co precursor, we were able to control the formation of a hard ferrimagnetic (FiM) Co-ferrite shell or an antiferromagnetic (AFM) CoO shell at the surface of a soft FiM Fe3-δO4 core. The formation of the Co-ferrite shell was also found to occur through two different mechanisms: the diffusion of Co or the growth at the iron oxide surface. The structural properties of core-shell nanoparticles were investigated by a wide panel of techniques such as HAADF, STEM and XRD. The distribution of Fe and Co elements in the crystal structure was described accurately by XAS and XMCD. The operating conditions influenced significantly the oxidation rate of Fe2+ in the core as well as the occupancy of Oh sites by Fe2+ and Co2+ cations. The structural properties of nanoparticles were correlated with their magnetic properties which were investigated by SQUID magnetometry. Each core-shell nanoparticle displayed enhanced effective magnetic anisotropy energy (Eeff) in comparison with pristine Fe3-δO4 nanoparticles because of magnetic coupling at the core-shell interface. The Co-ferrite FiM shells resulted in better enhancement of Eeff than a CoO AFM shell. In addition, the magnetic properties were also influenced by the core size. The coercive field (HC) was increased by core reduction while the blocking temperature (TB) was increased by a larger core. Element-specific XMCD measurements showed the fine coupling of Fe and Co cations which agree with Co-ferrite in each sample, e.g. the formation of a Co-doped interfacial layer in the Fe3-δO4@CoO nanoparticles.

12.
J Am Chem Soc ; 141(25): 9783-9787, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31149820

RESUMEN

Exchange coupled nanoparticles that combine hard and soft magnetic phases are very promising to enhance the effective magnetic anisotropy while preserving sizes below 20 nm. However, the core-shell structure is usually insufficient to produce rare earth-free ferro(i)magnetic blocked nanoparticles at room temperature. We report on onion-type magnetic nanoparticles prepared by a three-step seed mediated growth based on the thermal decomposition method. The core@shell@shell structure consists of a core and an external shell of Fe3-δO4 separated by an intermediate Co-doped ferrite shell. The double exchange coupling at both core@shell and shell@shell interfaces results in such an increased of the magnetic anisotropy energy, that onion-type nanoparticles of 16 nm mainly based on iron oxide are blocked at room temperature. We envision that these results are very appealing for potential applications based on permanent magnets.

13.
ACS Appl Mater Interfaces ; 10(37): 31580-31585, 2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30136570

RESUMEN

One promising route toward encoding information is to utilize the two stable electronic states of a spin crossover molecule. Although this property is clearly manifested in transport across single molecule junctions, evidence linking charge transport across a solid-state device to the molecular film's spin state has thus far remained indirect. To establish this link, we deploy materials-centric and device-centric operando experiments involving X-ray absorption spectroscopy. We find a correlation between the temperature dependencies of the junction resistance and the Fe spin state within the device's [Fe(H2B(pz)2)2(NH2-phen)] molecular film. We also factually observe that the Fe molecular site mediates charge transport. Our dual operando studies reveal that transport involves a subset of molecules within an electronically heterogeneous spin crossover film. Our work confers an insight that substantially improves the state-of-the-art regarding spin crossover-based devices, thanks to a methodology that can benefit device studies of other next-generation molecular compounds.

14.
Adv Mater ; 29(19)2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28295696

RESUMEN

Materials science and device studies have, when implemented jointly as "operando" studies, better revealed the causal link between the properties of the device's materials and its operation, with applications ranging from gas sensing to information and energy technologies. Here, as a further step that maximizes this causal link, the paper focuses on the electronic properties of those atoms that drive a device's operation by using it to read out the materials property. It is demonstrated how this method can reveal insight into the operation of a macroscale, industrial-grade microelectronic device on the atomic level. A magnetic tunnel junction's (MTJ's) current, which involves charge transport across different atomic species and interfaces, is measured while these atoms absorb soft X-rays with synchrotron-grade brilliance. X-ray absorption is found to affect magnetotransport when the photon energy and linear polarization are tuned to excite FeO bonds parallel to the MTJ's interfaces. This explicit link between the device's spintronic performance and these FeO bonds, although predicted, challenges conventional wisdom on their detrimental spintronic impact. The technique opens interdisciplinary possibilities to directly probe the role of different atomic species on device operation, and shall considerably simplify the materials science iterations within device research.

15.
Nat Commun ; 7: 13646, 2016 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-27929089

RESUMEN

A challenge in molecular spintronics is to control the magnetic coupling between magnetic molecules and magnetic electrodes to build efficient devices. Here we show that the nature of the magnetic ion of anchored metal complexes highly impacts the exchange coupling of the molecules with magnetic substrates. Surface anchoring alters the magnetic anisotropy of the cobalt(II)-containing complex (Co(Pyipa)2), and results in blocking of its magnetization due to the presence of a magnetic hysteresis loop. In contrast, no hysteresis loop is observed in the isostructural nickel(II)-containing complex (Ni(Pyipa)2). Through XMCD experiments and theoretical calculations we find that Co(Pyipa)2 is strongly ferromagnetically coupled to the surface, while Ni(Pyipa)2 is either not coupled or weakly antiferromagnetically coupled to the substrate. These results highlight the importance of the synergistic effect that the electronic structure of a metal ion and the organic ligands has on the exchange interaction and anisotropy occurring at the molecule-electrode interface.

16.
Sci Rep ; 5: 18377, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26675537

RESUMEN

The fundamental important and technologically widely employed exchange bias effect occurs in general in bilayers of magnetic thin films consisting of antiferromagnetic and ferromagnetic layers where the hard magnetization behavior of an antiferromagnetic thin film causes a shift in the magnetization curve of a soft ferromagnetic film. The minimization of the single magnetic grain size to increase the storage density and the subsequent demand for magnetic materials with very high magnetic anisotropy requires a system with high HEB. Here we report an extremely high HEB of 4 Tesla observed in a single amorphous DyCo4 film close to room temperature. The origin of the exchange bias can be associated with the variation of the magnetic behavior from the surface towards the bulk part of the film revealed by X-ray absorption spectroscopy and X-ray magnetic circular dichroism techniques utilizing the bulk sensitive transmission and the surface sensitive total electron yield modes. The competition between the atomic exchange coupling in the single film and the Zeeman interaction lead to an intrinsic exchanged coupled system and the so far highest exchange bias effect HEB = 4 Tesla reported in a single film, which is accommodated by a partial domain wall formation.

17.
Nat Commun ; 6: 10139, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26634987

RESUMEN

Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest--and more attractive--systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [Co(II)(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination--without nanoparticle aggregation and without complex dissociation--of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude.

18.
Nano Lett ; 15(12): 7921-6, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26575946

RESUMEN

We experimentally and theoretically show that the magnetic coupling at room temperature between paramagnetic Mn within manganese phthalocyanine molecules and a Co layer persists when separated by a Cu spacer. The molecule's magnetization amplitude and direction can be tuned by varying the Cu-spacer thickness and evolves according to an interlayer exchange coupling mechanism. Ab initio calculations predict a highly spin-polarized density of states at the Fermi level of this metal-molecule interface, thereby strengthening prospective spintronics applications.

19.
Nat Mater ; 14(10): 981-4, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26191660

RESUMEN

Molecular semiconductors may exhibit antiferromagnetic correlations well below room temperature. Although inorganic antiferromagnetic layers may exchange bias single-molecule magnets, the reciprocal effect of an antiferromagnetic molecular layer magnetically pinning an inorganic ferromagnetic layer through exchange bias has so far not been observed. We report on the magnetic interplay, extending beyond the interface, between a cobalt ferromagnetic layer and a paramagnetic organic manganese phthalocyanine (MnPc) layer. These ferromagnetic/organic interfaces are called spinterfaces because spin polarization arises on them. The robust magnetism of the Co/MnPc spinterface stabilizes antiferromagnetic ordering at room temperature within subsequent MnPc monolayers away from the interface. The inferred magnetic coupling strength is much larger than that found in similar bulk, thin or ultrathin systems. In addition, at lower temperature, the antiferromagnetic MnPc layer induces an exchange bias on the Co film, which is magnetically pinned. These findings create new routes towards designing organic spintronic devices.

20.
Opt Lett ; 39(7): 2141-4, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24686695

RESUMEN

An alternate multilayer (AML) grating has been prepared by coating an ion etched lamellar grating with a B4C/Mo2C multilayer (ML) having a layer thickness close to the groove depth. Such a structure behaves as a 2D synthetic crystal and can reach very high efficiencies when the Bragg condition is satisfied. This AML coated grating has been characterized at the SOLEIL Metrology and Tests Beamline between 0.7 and 1.7 keV and at the four-crystal monochromator beamline of Physikalisch-Technische Bundesanstalt (PTB) at BESSY II between 1.75 and 3.4 keV. A peak diffraction efficiency of nearly 27% was measured at 2.2 keV. The measured efficiencies are well reproduced by numerical simulations made with the electromagnetic propagation code CARPEM. Such AML gratings, paired with a matched ML mirror, constitute efficient monochromators for intermediate energy photons. They will extend the accessible energy for many applications as x-ray absorption spectroscopy or x-ray magnetic circular dichroism experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...