Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 42(6): 954-967, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34907026

RESUMEN

Stable neural function requires an energy supply that can meet the intense episodic power demands of neuronal activity. Neurons have presumably optimized the volume of their bioenergetic machinery to ensure these power demands are met, but the relationship between presynaptic power demands and the volume available to the bioenergetic machinery has never been quantified. Here, we estimated the power demands of six motor nerve terminals in female Drosophila larvae through direct measurements of neurotransmitter release and Ca2+ entry, and via theoretical estimates of Na+ entry and power demands at rest. Electron microscopy revealed that terminals with the highest power demands contained the greatest volume of mitochondria, indicating that mitochondria are allocated according to presynaptic power demands. In addition, terminals with the greatest power demand-to-volume ratio (∼66 nmol·min-1·µl-1) harbor the largest mitochondria packed at the greatest density. If we assume sequential and complete oxidation of glucose by glycolysis and oxidative phosphorylation, then these mitochondria are required to produce ATP at a rate of 52 nmol·min-1·µl-1 at rest, rising to 963 during activity. Glycolysis would contribute ATP at 0.24 nmol·min-1·µl-1 of cytosol at rest, rising to 4.36 during activity. These data provide a quantitative framework for presynaptic bioenergetics in situ, and reveal that, beyond an immediate capacity to accelerate ATP output from glycolysis and oxidative phosphorylation, over longer time periods presynaptic terminals optimize mitochondrial volume and density to meet power demand.SIGNIFICANCE STATEMENT The remarkable energy demands of the brain are supported by the complete oxidation of its fuel but debate continues regarding a division of labor between glycolysis and oxidative phosphorylation across different cell types. Here, we exploit the neuromuscular synapse, a model for studying neurophysiology, to elucidate fundamental aspects of neuronal energy metabolism that ultimately constrain rates of neural processing. We quantified energy production rates required to sustain activity at individual nerve terminals and compared these with the volume capable of oxidative phosphorylation (mitochondria) and glycolysis (cytosol). We find strong support for oxidative phosphorylation playing a primary role in presynaptic terminals and provide the first in vivo estimates of energy production rates per unit volume of presynaptic mitochondria and cytosol.


Asunto(s)
Encéfalo/fisiología , Metabolismo Energético/fisiología , Tamaño Mitocondrial/fisiología , Neuronas Motoras/fisiología , Terminales Presinápticos/fisiología , Animales , Drosophila , Femenino , Mitocondrias/fisiología , Transmisión Sináptica/fisiología
2.
Sci Rep ; 11(1): 4976, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33654163

RESUMEN

Circumferential skin creases (CSC-KT) is a rare polymalformative syndrome characterised by intellectual disability associated with skin creases on the limbs, and very characteristic craniofacial malformations. Previously, heterozygous and homozygous mutations in MAPRE2 were found to be causal for this disease. MAPRE2 encodes for a member of evolutionary conserved microtubule plus end tracking proteins, the end binding (EB) family. Unlike MAPRE1 and MAPRE3, MAPRE2 is not required for the persistent growth and stabilization of microtubules, but plays a role in other cellular processes such as mitotic progression and regulation of cell adhesion. The mutations identified in MAPRE2 all reside within the calponin homology domain, responsible to track and interact with the plus-end tip of growing microtubules, and previous data showed that altered dosage of MAPRE2 resulted in abnormal branchial arch patterning in zebrafish. In this study, we developed patient derived induced pluripotent stem cell lines for MAPRE2, together with isogenic controls, using CRISPR/Cas9 technology, and differentiated them towards neural crest cells with cranial identity. We show that changes in MAPRE2 lead to alterations in neural crest migration in vitro but also in vivo, following xenotransplantation of neural crest progenitors into developing chicken embryos. In addition, we provide evidence that changes in focal adhesion might underlie the altered cell motility of the MAPRE2 mutant cranial neural crest cells. Our data provide evidence that MAPRE2 is involved in cellular migration of cranial neural crest and offers critical insights into the mechanism underlying the craniofacial dysmorphisms and cleft palate present in CSC-KT patients. This adds the CSC-KT disorder to the growing list of neurocristopathies.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Anomalías Craneofaciales , Proteínas Asociadas a Microtúbulos , Cresta Neural/metabolismo , Células-Madre Neurales/metabolismo , Animales , Embrión de Pollo , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Síndrome , Pez Cebra
3.
Glia ; 68(5): 1046-1064, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31841614

RESUMEN

Mutations in C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis (ALS). Accumulating evidence implicates astrocytes as important non-cell autonomous contributors to ALS pathogenesis, although the potential deleterious effects of astrocytes on the function of motor neurons remains to be determined in a completely humanized model of C9orf72-mediated ALS. Here, we use a human iPSC-based model to study the cell autonomous and non-autonomous consequences of mutant C9orf72 expression by astrocytes. We show that mutant astrocytes both recapitulate key aspects of C9orf72-related ALS pathology and, upon co-culture, cause motor neurons to undergo a progressive loss of action potential output due to decreases in the magnitude of voltage-activated Na+ and K+ currents. Importantly, CRISPR/Cas-9 mediated excision of the C9orf72 repeat expansion reverses these phenotypes, confirming that the C9orf72 mutation is responsible for both cell-autonomous astrocyte pathology and non-cell autonomous motor neuron pathophysiology.


Asunto(s)
Astrocitos/metabolismo , Proteína C9orf72/genética , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas Motoras/metabolismo , Potenciales de Acción/fisiología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Astrocitos/patología , Proteína C9orf72/metabolismo , Técnicas de Cocultivo , Humanos , Células Madre Pluripotentes Inducidas/patología , Neuronas Motoras/patología , Mutación
4.
Nat Commun ; 9(1): 347, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29367641

RESUMEN

Mutations in C9ORF72 are the most common cause of familial amyotrophic lateral sclerosis (ALS). Here, through a combination of RNA-Seq and electrophysiological studies on induced pluripotent stem cell (iPSC)-derived motor neurons (MNs), we show that increased expression of GluA1 AMPA receptor (AMPAR) subunit occurs in MNs with C9ORF72 mutations that leads to increased Ca2+-permeable AMPAR expression and results in enhanced selective MN vulnerability to excitotoxicity. These deficits are not found in iPSC-derived cortical neurons and are abolished by CRISPR/Cas9-mediated correction of the C9ORF72 repeat expansion in MNs. We also demonstrate that MN-specific dysregulation of AMPAR expression is also present in C9ORF72 patient post-mortem material. We therefore present multiple lines of evidence for the specific upregulation of GluA1 subunits in human mutant C9ORF72 MNs that could lead to a potential pathogenic excitotoxic mechanism in ALS.


Asunto(s)
Proteína C9orf72/genética , Neuronas Motoras/patología , Receptores AMPA/metabolismo , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/metabolismo , Sistemas CRISPR-Cas , Calcio/metabolismo , Expansión de las Repeticiones de ADN , Marcación de Gen , Humanos , Receptores AMPA/genética , Médula Espinal/metabolismo , Médula Espinal/fisiopatología
5.
Genome Biol ; 18(1): 22, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-28137300

RESUMEN

BACKGROUND: Whole-exome sequencing (WES) has been successful in identifying genes that cause familial Parkinson's disease (PD). However, until now this approach has not been deployed to study large cohorts of unrelated participants. To discover rare PD susceptibility variants, we performed WES in 1148 unrelated cases and 503 control participants. Candidate genes were subsequently validated for functions relevant to PD based on parallel RNA-interference (RNAi) screens in human cell culture and Drosophila and C. elegans models. RESULTS: Assuming autosomal recessive inheritance, we identify 27 genes that have homozygous or compound heterozygous loss-of-function variants in PD cases. Definitive replication and confirmation of these findings were hindered by potential heterogeneity and by the rarity of the implicated alleles. We therefore looked for potential genetic interactions with established PD mechanisms. Following RNAi-mediated knockdown, 15 of the genes modulated mitochondrial dynamics in human neuronal cultures and four candidates enhanced α-synuclein-induced neurodegeneration in Drosophila. Based on complementary analyses in independent human datasets, five functionally validated genes-GPATCH2L, UHRF1BP1L, PTPRH, ARSB, and VPS13C-also showed evidence consistent with genetic replication. CONCLUSIONS: By integrating human genetic and functional evidence, we identify several PD susceptibility gene candidates for further investigation. Our approach highlights a powerful experimental strategy with broad applicability for future studies of disorders with complex genetic etiologies.


Asunto(s)
Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Enfermedad de Parkinson/genética , Análisis de Secuencia de ADN/métodos , alfa-Sinucleína/genética , Adolescente , Adulto , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Estudios de Casos y Controles , Células Cultivadas , Niño , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Exoma , Humanos , Persona de Mediana Edad , Interferencia de ARN , Adulto Joven
6.
Curr Biol ; 26(19): 2562-2571, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27593375

RESUMEN

Nerve terminals contain multiple sites specialized for the release of neurotransmitters. Release usually occurs with low probability, a design thought to confer many advantages. High-probability release sites are not uncommon, but their advantages are not well understood. Here, we test the hypothesis that high-probability release sites represent an energy-efficient design. We examined release site probabilities and energy efficiency at the terminals of two glutamatergic motor neurons synapsing on the same muscle fiber in Drosophila larvae. Through electrophysiological and ultrastructural measurements, we calculated release site probabilities to differ considerably between terminals (0.33 versus 0.11). We estimated the energy required to release and recycle glutamate from the same measurements. The energy required to remove calcium and sodium ions subsequent to nerve excitation was estimated through microfluorimetric and morphological measurements. We calculated energy efficiency as the number of glutamate molecules released per ATP molecule hydrolyzed, and high-probability release site terminals were found to be more efficient (0.13 versus 0.06). Our analytical model indicates that energy efficiency is optimal (∼0.15) at high release site probabilities (∼0.76). As limitations in energy supply constrain neural function, high-probability release sites might ameliorate such constraints by demanding less energy. Energy efficiency can be viewed as one aspect of nerve terminal function, in balance with others, because high-efficiency terminals depress significantly during episodic bursts of activity.


Asunto(s)
Drosophila melanogaster/fisiología , Neuronas Motoras/fisiología , Unión Neuromuscular/fisiología , Terminales Presinápticos/fisiología , Transmisión Sináptica , Animales , Drosophila melanogaster/crecimiento & desarrollo , Ácido Glutámico/metabolismo , Larva/crecimiento & desarrollo , Larva/fisiología
7.
Acta Neuropathol Commun ; 4(1): 62, 2016 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-27338814

RESUMEN

Common neurodegenerative proteinopathies, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are characterized by the misfolding and aggregation of toxic protein species, including the amyloid beta (Aß) peptide, microtubule-associated protein Tau (Tau), and alpha-synuclein (αSyn) protein. These factors also show toxicity in Drosophila; however, potential limitations of prior studies include poor discrimination between effects on the adult versus developing nervous system and neuronal versus glial cell types. In addition, variable expression paradigms and outcomes hinder systematic comparison of toxicity profiles. Using standardized conditions and medium-throughput assays, we express human Tau, Aß or αSyn selectively in neurons of the adult Drosophila retina and monitor age-dependent changes in both structure and function, based on tissue histology and recordings of the electroretinogram (ERG), respectively. We find that each protein causes a unique profile of neurodegenerative pathology, demonstrating distinct and separable impacts on neuronal death and dysfunction. Strikingly, expression of Tau leads to progressive loss of ERG responses whereas retinal architecture and neuronal numbers are largely preserved. By contrast, Aß induces modest, age-dependent neuronal loss without degrading the retinal ERG. αSyn expression, using a codon-optimized transgene, is characterized by marked retinal vacuolar change, progressive photoreceptor cell death, and delayed-onset but modest ERG changes. Lastly, to address potential mechanisms, we perform transmission electron microscopy (TEM) to reveal potential degenerative changes at the ultrastructural level. Surprisingly, Tau and αSyn each cause prominent but distinct synaptotoxic profiles, including disorganization or enlargement of photoreceptor terminals, respectively. Our findings highlight variable and dynamic properties of neurodegeneration triggered by these disease-relevant proteins in vivo, and suggest that Drosophila may be useful for revealing determinants of neuronal dysfunction that precede cell loss, including synaptic changes, in the adult nervous system.


Asunto(s)
Muerte Celular/fisiología , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Envejecimiento/metabolismo , Envejecimiento/patología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Drosophila , Electrorretinografía , Femenino , Humanos , Potenciales de la Membrana/fisiología , Microelectrodos , Microscopía Electrónica de Transmisión , Enfermedades Neurodegenerativas/patología , Neuronas/patología , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Retina/metabolismo , Retina/patología , Visión Ocular/fisiología , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
8.
J Neurosci ; 34(20): 6924-37, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24828646

RESUMEN

Monoamine neurotransmitters are stored in both synaptic vesicles (SVs), which are required for release at the synapse, and large dense-core vesicles (LDCVs), which mediate extrasynaptic release. The contributions of each type of vesicular release to specific behaviors are not known. To address this issue, we generated mutations in the C-terminal trafficking domain of the Drosophila vesicular monoamine transporter (DVMAT), which is required for the vesicular storage of monoamines in both SVs and LDCVs. Deletion of the terminal 23 aa (DVMAT-Δ3) reduced the rate of endocytosis and localization of DVMAT to SVs, but supported localization to LDCVs. An alanine substitution mutation in a tyrosine-based motif (DVMAT-Y600A) also reduced sorting to SVs and showed an endocytic deficit specific to aminergic nerve terminals. Redistribution of DVMAT-Y600A from SV to LDCV fractions was also enhanced in aminergic neurons. To determine how these changes might affect behavior, we expressed DVMAT-Δ3 and DVMAT-Y600A in a dVMAT null genetic background that lacks endogenous dVMAT activity. When expressed ubiquitously, DVMAT-Δ3 showed a specific deficit in female fertility, whereas DVMAT-Y600A rescued behavior similarly to DVMAT-wt. In contrast, when expressed more specifically in octopaminergic neurons, both DVMAT-Δ3 and DVMAT-Y600A failed to rescue female fertility, and DVMAT-Y600A showed deficits in larval locomotion. DVMAT-Y600A also showed more severe dominant effects than either DVMAT-wt or DVMAT-Δ3. We propose that these behavioral deficits result from the redistribution of DVMAT from SVs to LDCVs. By extension, our data suggest that the balance of amine release from SVs versus that from LDCVs is critical for the function of some aminergic circuits.


Asunto(s)
Conducta Animal/fisiología , Proteínas de Drosophila/metabolismo , Vesículas Secretoras/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Proteínas de Transporte Vesicular de Monoaminas/genética
9.
J Physiol ; 591(7): 1691-706, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23401611

RESUMEN

All biochemical processes, including those underlying synaptic function and plasticity, are pH sensitive. Cytosolic pH (pH(cyto)) shifts are known to accompany nerve activity in situ, but technological limitations have prevented characterization of such shifts in vivo. Genetically encoded pH-indicators (GEpHIs) allow for tissue-specific in vivo measurement of pH. We expressed three different GEpHIs in the cytosol of Drosophila larval motor neurons and observed substantial presynaptic acidification in nerve termini during nerve stimulation in situ. SuperEcliptic pHluorin was the most useful GEpHI for studying pH(cyto) shifts in this model system. We determined the resting pH of the nerve terminal cytosol to be 7.30 ± 0.02, and observed a decrease of 0.16 ± 0.01 pH units when the axon was stimulated at 40 Hz for 4 s. Realkalinization occurred upon cessation of stimulation with a time course of 20.54 ± 1.05 s (τ). The chemical pH-indicator 2,7-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein corroborated these changes in pH(cyto). Bicarbonate-derived buffering did not contribute to buffering of acid loads from short (≤ 4 s) trains of action potentials but did buffer slow (~60 s) acid loads. The magnitude of cytosolic acid transients correlated with cytosolic Ca(2+) increase upon stimulation, and partial inhibition of the plasma membrane Ca(2+)-ATPase, a Ca(2+)/H(+) exchanger, attenuated pH(cyto) shifts. Repeated stimulus trains mimicking motor patterns generated greater cytosolic acidification (~0.30 pH units). Imaging through the cuticle of intact larvae revealed spontaneous pH(cyto) shifts in presynaptic termini in vivo, similar to those seen in situ during fictive locomotion, indicating that presynaptic pH(cyto) shifts cannot be dismissed as artifacts of ex vivo preparations.


Asunto(s)
Citosol/química , Drosophila/fisiología , Actividad Motora/fisiología , Neuronas Motoras/fisiología , Terminaciones Nerviosas/fisiología , Animales , Animales Modificados Genéticamente , Drosophila/genética , Femenino , Fluorescencia , Concentración de Iones de Hidrógeno
10.
J Neurosci ; 32(4): 1233-43, 2012 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-22279208

RESUMEN

Most neurons fire in bursts, imposing episodic energy demands, but how these demands are coordinated with oxidative phosphorylation is still unknown. Here, using fluorescence imaging techniques on presynaptic termini of Drosophila motor neurons (MNs), we show that mitochondrial matrix pH (pHm), inner membrane potential (Δψm), and NAD(P)H levels ([NAD(P)H]m) increase within seconds of nerve stimulation. The elevations of pHm, Δψm, and [NAD(P)H]m indicate an increased capacity for ATP production. Elevations in pHm were blocked by manipulations that blocked mitochondrial Ca2+ uptake, including replacement of extracellular Ca2+ with Sr2+ and application of either tetraphenylphosphonium chloride or KB-R7943, indicating that it is Ca2+ that stimulates presynaptic mitochondrial energy metabolism. To place this phenomenon within the context of endogenous neuronal activity, the firing rates of a number of individually identified MNs were determined during fictive locomotion. Surprisingly, although endogenous firing rates are significantly different, there was little difference in presynaptic cytosolic Ca2+ levels ([Ca2+]c) between MNs when each fires at its endogenous rate. The average [Ca2+]c level (329±11 nM) was slightly above the average Ca2+ affinity of the mitochondria (281±13 nM). In summary, we show that when MNs fire at endogenous rates, [Ca2+]c is driven into a range where mitochondria rapidly acquire Ca2+. As we also show that Ca2+ stimulates presynaptic mitochondrial energy metabolism, we conclude that [Ca2+]c levels play an integral role in coordinating mitochondrial energy metabolism with presynaptic activity in Drosophila MNs.


Asunto(s)
Calcio/fisiología , Citosol/metabolismo , Metabolismo Energético/fisiología , Mitocondrias/fisiología , Terminales Presinápticos/metabolismo , Animales , Animales Modificados Genéticamente , Drosophila , Potencial de la Membrana Mitocondrial/fisiología , Terminales Presinápticos/fisiología
11.
Front Neuroeng ; 4: 11, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22016734

RESUMEN

Regenerative peripheral nerve interfaces have been proposed as viable alternatives for the natural control of robotic prosthetic devices. However, sensory and motor axons at the neural interface are of mixed sub-modality types, which difficult the specific recording from motor axons and the eliciting of precise sensory modalities through selective stimulation. Here we evaluated the possibility of using type specific neurotrophins to preferentially entice the regeneration of defined axonal populations from transected peripheral nerves into separate compartments. Segregation of mixed sensory fibers from dorsal root ganglion neurons was evaluated in vitro by compartmentalized diffusion delivery of nerve growth factor (NGF) and neurotrophin-3 (NT-3), to preferentially entice the growth of TrkA+ nociceptive and TrkC+ proprioceptive subsets of sensory neurons, respectively. The average axon length in the NGF channel increased 2.5-fold compared to that in saline or NT-3, whereas the number of branches increased threefold in the NT-3 channels. These results were confirmed using a 3D "Y"-shaped in vitro assay showing that the arm containing NGF was able to entice a fivefold increase in axonal length of unbranched fibers. To address if such segregation can be enticed in vivo, a "Y"-shaped tubing was used to allow regeneration of the transected adult rat sciatic nerve into separate compartments filled with either NFG or NT-3. A significant increase in the number of CGRP+ pain fibers were attracted toward the sural nerve, while N-52+ large-diameter axons were observed in the tibial and NT-3 compartments. This study demonstrates the guided enrichment of sensory axons in specific regenerative chambers, and supports the notion that neurotrophic factors can be used to segregate sensory and perhaps motor axons in separate peripheral interfaces.

12.
J Neurosci ; 31(25): 9093-100, 2011 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-21697360

RESUMEN

The release of neurotransmitters, neurotrophins, and neuropeptides is modulated by Ca(2+) mobilization from the endoplasmic reticulum (ER) and activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). Furthermore, when neuronal cultures are subjected to prolonged depolarization, presynaptic CaMKII redistributes from the cytoplasm to accumulate near active zones (AZs), a process that is reminiscent of CaMKII translocation to the postsynaptic side of the synapse. However, it is not known how presynaptic CaMKII activation and translocation depend on neuronal activity and ER Ca(2+) release. Here these issues are addressed in Drosophila motoneuron terminals by imaging a fluorescent reporter of CaMKII activity and subcellular distribution. We report that neuronal excitation acts with ER Ca(2+) stores to induce CaMKII activation and translocation to a subset of AZs. Surprisingly, activation is slow, reflecting T286 autophosphorylation and the function of presynaptic ER ryanodine receptors (RyRs) and inositol trisphosphate receptors (IP3Rs). Furthermore, translocation is not simply proportional to CaMKII activity, as T286 autophosphorylation promotes activation, but does not affect translocation. In contrast, RNA interference-induced knockdown of the AZ scaffold protein Bruchpilot disrupts CaMKII translocation without affecting activation. Finally, RyRs comparably stimulate both activation and translocation, but IP3Rs preferentially promote translocation. Thus, Ca(2+) provided by different presynaptic ER Ca(2+) release channels is not equivalent. These results suggest that presynaptic CaMKII activation depends on autophosphorylation and global Ca(2+) in the terminal, while translocation to AZs requires Ca(2+) microdomains generated by IP3Rs.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Drosophila/metabolismo , Neuronas Motoras/metabolismo , Terminales Presinápticos/metabolismo , Transmisión Sináptica/fisiología , Animales , Células Cultivadas , Activación Enzimática , Retroalimentación Fisiológica/fisiología , Transporte de Proteínas
13.
J Neurosci ; 30(5): 1869-81, 2010 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-20130196

RESUMEN

Mitochondria accumulate within nerve terminals and support synaptic function, most notably through ATP production. They can also sequester Ca(2+) during nerve stimulation, but it is unknown whether this limits presynaptic Ca(2+) levels at physiological nerve firing rates. Similarly, it is unclear whether mitochondrial Ca(2+) sequestration differs between functionally different nerve terminals. We addressed these questions using a combination of synthetic and genetically encoded Ca(2+) indicators to examine cytosolic and mitochondrial Ca(2+) levels in presynaptic terminals of tonic (MN13-Ib) and phasic (MNSNb/d-Is) motor neurons in Drosophila, which, as we determined, fire during fictive locomotion at approximately 42 Hz and approximately 8 Hz, respectively. Mitochondrial Ca(2+) sequestration starts in both terminals at approximately 250 nM, exhibits a similar Ca(2+)-uptake affinity (approximately 410 nM), and does not require Ca(2+) release from the endoplasmic reticulum. Nonetheless, mitochondrial Ca(2+) uptake in type Is terminals is more responsive to low-frequency nerve stimulation and this is due to higher cytosolic Ca(2+) levels. Since type Ib terminals have a higher mitochondrial density than Is terminals, it seemed possible that greater mitochondrial Ca(2+) sequestration may be responsible for the lower cytosolic Ca(2+) levels in Ib terminals. However, genetic and pharmacological manipulations of mitochondrial Ca(2+) uptake did not significantly alter nerve-stimulated elevations in cytosolic Ca(2+) levels in either terminal type within physiologically relevant rates of stimulation. Our findings indicate that presynaptic mitochondria have a similar affinity for Ca(2+) in functionally different nerve terminals, but do not limit cytosolic Ca(2+) levels within the range of motor neuron firing rates in situ.


Asunto(s)
Calcio/metabolismo , Mitocondrias/metabolismo , Neuronas Motoras/metabolismo , Terminales Presinápticos/metabolismo , Animales , Drosophila , Larva , Mitocondrias/ultraestructura , Neuronas Motoras/ultraestructura , Terminales Presinápticos/ultraestructura , Cálculos de la Vejiga Urinaria/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...