Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Biol Trace Elem Res ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676879

RESUMEN

Selenium compounds exert their antioxidant activity mostly when the selenium atom is incorporated into selenoproteins. In our work, we tested the possibility that selenite itself interacts with thiols to form active species that have reducing properties. Therefore, we studied the reduction of 2-(4-carboxyphenyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazol-1-yloxy-3-oxide radical (•cPTIO), damage of plasmid DNA (pDNA), modulation of rat hemodynamic parameters and tension of isolated arteries induced by products of interaction of selenite with thiols. We found that the products of selenite interaction with thiols had significant reducing properties that could be attributed mainly to the selenide and that selenite had catalytic properties in the access of thiols. The potency of thiols to reduce •cPTIO in the interaction with selenite was cysteine > homocysteine > glutathione reduced > N-acetylcysteine. Thiol/selenite products cleaved pDNA, with superoxide dismutase enhancing these effects suggesting a positive involvement of superoxide anion in the process. The observed •cPTIO reduction and pDNA cleavage were significantly lower when selenomethionine was used instead of selenite. The products of glutathione/selenite interaction affected several hemodynamic parameters including rat blood pressure decrease. Notably, the products relaxed isolated mesenteric artery, which may explain the observed decrease in rat blood pressure. In conclusion, we found that the thiol/selenite interaction products exhibited significant reducing properties which can be used in further studies of the treatment of pathological conditions caused by oxidative stress. The results of decreased rat blood pressure and the tension of mesenteric artery may be perspective in studies focused on cardiovascular disease and their prevention.

2.
Front Oncol ; 14: 1360678, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38496757

RESUMEN

Background: Germ cell tumors (GCTs) represent the most frequent solid malignancy in young men. This malignancy is highly curable by cisplatin (CDDP)-based chemotherapy. However, there is a proportion of patients having a poor prognosis due to refractory disease or its relapse. No reliable biomarkers being able to timely and accurately stratify poor prognosis GCT patients are currently available. Previously, we have shown that chemotherapy-naïve GCT patients with higher DNA damage levels in peripheral blood mononuclear cells (PBMCs) have significantly worse prognosis compared to patients with lower DNA damage levels. Methods: DNA damage levels in PBMCs of both chemotherapy-naïve and first cycle chemotherapy-treated GCT patients have been assessed by standard alkaline comet assay and its styrene oxide (SO)-modified version. These levels were correlated with clinico-pathological characteristics. Results: We re-confirm prognostic value of DNA damage level in chemotherapy-naïve GCT patients and reveal that this prognosticator is equally effective in GCT patients after first cycle of CDDP-based chemotherapy. Furthermore, we demonstrate that SO-modified comet assay is comparably sensitive as standard alkaline comet assay in case of patients who underwent first cycle of CDDP-based chemotherapy, although it appears more suitable to detect DNA cross-links. Conclusion: We propose that DNA damage levels in PBMCs before and after first cycle of CCDP-based chemotherapy are comparable independent prognosticators for progression-free and overall survivals in GCT patients. Therefore, their clinical use is highly advised to stratify GCT patients to identify those who are most at risk of developing disease recurrence or relapse, allowing tailoring therapeutic interventions to poor prognosis individuals, and optimizing their care management and treatment regimen.

3.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36768818

RESUMEN

Testicular germ cell tumours (TGCTs) are the most common solid malignancy among young men, and their incidence is still increasing. Despite good curability with cisplatin (CDDP)-based chemotherapy, about 10% of TGCTs are non-responsive and show a chemoresistant phenotype. To further increase TGCT curability, better prediction of risk of relapse and early detection of refractory cases is needed. Therefore, to diagnose this malignancy more precisely, stratify patients more accurately and improve decision-making on treatment modality, new biomarkers are still required. Numerous studies showed association of differential expressions of microRNAs (miRNAs) with cancer. Using microarray analysis followed by RT-qPCR validation, we identified specific miRNA expression patterns that discriminate chemoresistant phenotypes in TGCTs. Comparing CDDP-resistant vs. -sensitive TGCT cell lines, we identified miR-218-5p, miR-31-5p, miR-125b-5p, miR-27b-3p, miR-199a-5p, miR-214-3p, let-7a and miR-517a-3p as significantly up-regulated and miR-374b-5p, miR-378a-3p, miR-20b-5p and miR-30e-3p as significantly down-regulated. In patient tumour samples, we observed the highest median values of relative expression of miR-218-5p, miR-31-5p, miR-375-5p and miR-517a-3p, but also miR-20b-5p and miR-378a-3p, in metastatic tumour samples when compared with primary tumour or control samples. In TGCT patient plasma samples, we detected increased expression of miR-218-5p, miR-31-5p, miR-517a-3p and miR-375-5p when compared to healthy individuals. We propose that miR-218-5p, miR-31-5p, miR-375-5p, miR-517-3p, miR-20b-5p and miR-378a-3p represent a new panel of biomarkers for better prediction of chemoresistance and more aggressive phenotypes potentially underlying metastatic spread in non-seminomatous TGCTs. In addition, we provide predictions of the targets and functional and regulatory networks of selected miRNAs.


Asunto(s)
MicroARNs , Neoplasias de Células Germinales y Embrionarias , Neoplasias Testiculares , Humanos , Masculino , Cisplatino/farmacología , Cisplatino/uso terapéutico , Detección Precoz del Cáncer , MicroARNs/metabolismo , Neoplasias Testiculares/tratamiento farmacológico , Neoplasias Testiculares/genética , Biomarcadores , Neoplasias de Células Germinales y Embrionarias/tratamiento farmacológico , Neoplasias de Células Germinales y Embrionarias/genética , Análisis por Micromatrices , Análisis de Datos , Perfilación de la Expresión Génica , Biomarcadores de Tumor/genética
4.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36293346

RESUMEN

Cisplatin (CDDP)-based chemotherapy is the standard of care in patients with muscle-invasive bladder cancer. However, in a large number of cases, the disease becomes resistant or does not respond to CDDP, and thus progresses and disseminates. In such cases, prognosis of patients is very poor. CDDP manifests its cytotoxic effects mainly through DNA damage induction. Hence, response to CDDP is mainly dependent on DNA damage repair and tolerance mechanisms. Herein, we have examined CDDP response in a panel of the urothelial carcinoma cell (UCC) lines. We characterized these cell lines with regard to viability after CDDP treatment, as well as kinetics of induction and repair of CDDP-induced DNA damage. We demonstrate that repair of CDDP-induced DNA lesions correlates, at least to some extent, with CDDP sensitivity. Furthermore, we monitored expression of the key genes involved in selected DNA repair and tolerance mechanisms, nucleotide excision repair, homologous recombination and translesion DNA synthesis, and show that it differs in the UCC lines and positively correlates with CDDP resistance. Our data indicate that CDDP response in the UCC lines is dependent on DNA damage repair and tolerance factors, which may, therefore, represent valuable therapeutic targets in this malignancy.


Asunto(s)
Antineoplásicos , Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Humanos , Cisplatino/farmacología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Reparación del ADN , Antineoplásicos/farmacología , Línea Celular , ADN
5.
Molecules ; 27(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36080497

RESUMEN

Aqueous root extract from Acanthopanax senticosus (ASRE) has a wide range of medicinal effects. The present work was aimed at studying the influence of sulfide, cysteine and glutathione on the antioxidant properties of ASRE and some of its selected phytochemical components. Reduction of the 2-(4-carboxyphenyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazol-1-yloxy-3-oxide (●cPTIO) stable radical and plasmid DNA (pDNA) cleavage in vitro assays were used to evaluate antioxidant and DNA-damaging properties of ASRE and its individual components. We found that the interaction of ASRE and its two components, caffeic acid and chlorogenic acid (but not protocatechuic acid and eleutheroside B or E), with H2S/HS-, cysteine or glutathione significantly increased the reduction of the ●cPTIO radical. In contrast, the potency of ASRE and its selected components was not affected by Na2S4, oxidized glutathione, cystine or methionine, indicating that the thiol group is a prerequisite for the promotion of the antioxidant effects. ASRE interacting with H2S/HS- or cysteine displayed a bell-shaped effect in the pDNA cleavage assay. However, ASRE and its components inhibited pDNA cleavage induced by polysulfides. In conclusion, we suggest that cysteine, glutathione and H2S/HS- increase antioxidant properties of ASRE and that changes of their concentrations and the thiol/disulfide ratio can influence the resulting biological effects of ASRE.


Asunto(s)
Eleutherococcus , Sulfuro de Hidrógeno , Antioxidantes/química , Antioxidantes/farmacología , Cisteína , ADN , Eleutherococcus/química , Glutatión , Sulfuro de Hidrógeno/química , Extractos Vegetales/farmacología , Plásmidos/genética , Sulfuros/farmacología
6.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35887244

RESUMEN

Mitochondria are dynamic organelles managing crucial processes of cellular metabolism and bioenergetics. Enabling rapid cellular adaptation to altered endogenous and exogenous environments, mitochondria play an important role in many pathophysiological states, including cancer. Being under the control of mitochondrial and nuclear DNA (mtDNA and nDNA), mitochondria adjust their activity and biogenesis to cell demands. In cancer, numerous mutations in mtDNA have been detected, which do not inactivate mitochondrial functions but rather alter energy metabolism to support cancer cell growth. Increasing evidence suggests that mtDNA mutations, mtDNA epigenetics and miRNA regulations dynamically modify signalling pathways in an altered microenvironment, resulting in cancer initiation and progression and aberrant therapy response. In this review, we discuss mitochondria as organelles importantly involved in tumorigenesis and anti-cancer therapy response. Tumour treatment unresponsiveness still represents a serious drawback in current drug therapies. Therefore, studying aspects related to genetic and epigenetic control of mitochondria can open a new field for understanding cancer therapy response. The urgency of finding new therapeutic regimens with better treatment outcomes underlines the targeting of mitochondria as a suitable candidate with new therapeutic potential. Understanding the role of mitochondria and their regulation in cancer development, progression and treatment is essential for the development of new safe and effective mitochondria-based therapeutic regimens.


Asunto(s)
Epigénesis Genética , Neoplasias , Transformación Celular Neoplásica/genética , ADN Mitocondrial/metabolismo , Metabolismo Energético/genética , Humanos , Mitocondrias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Microambiente Tumoral
7.
Life (Basel) ; 12(5)2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35629346

RESUMEN

The tumor microenvironment (TME) and the host inflammatory response are closely interconnected. The interplay between systemic inflammation and the local immune response may influence tumor development and progression in various types of cancer. The systemic immune-inflammation index (SII) represents a prognostic marker for germ cell tumors (GCTs). The aim of the present study was to detect specific immune cell subpopulation changes which were associated with the SII level in chemotherapy-naïve GCT patients. In total, 51 GCT patients, prior to cisplatin-based chemotherapy, were included in the present study. Immunophenotyping of peripheral blood leukocyte subpopulations was performed using flow cytometry. The SII level was correlated with the percentage of various leukocyte subpopulations. The obtained results demonstrated that SII levels above the cut-off value of SII ≥ 1003 were associated with higher neutrophil percentages. An inverse correlation was found between the SII and the peripheral lymphocyte percentage that logically reflects the calculations of the SII index. Furthermore, the presented data also showed that in the lymphocyte subpopulation, the association with the SII was driven by T-cell subpopulations. In innate immunity-cell subpopulations, we observed a correlation between SII level and neutrophils as well as associations with eosinophil, basophil, natural killer cell and dendritic cell percentages. We suppose that the described interactions represent a manifestation of cancer-induced immune suppression. The results of the present study contribute to the elucidation of the interrelationship between tumor cells and the innate/adaptive immune system of the host.

8.
Front Oncol ; 12: 858797, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359385

RESUMEN

The pattern of immune cell distribution in testicular germ cell tumors (GCT) significantly differs from the immune environment in normal testicular tissues. The present study aimed to evaluate the role of different leukocyte subpopulation in GCTs. A cohort of 84 chemotherapy-naïve GCT patients was analyzed. Immunophenotyping of peripheral blood leukocyte subpopulations was carried out by flow cytometry. In addition, the data assessing the immunophenotypes and the baseline clinicopathological characteristics of the included subjects were statistically evaluated. Their prognostic value for the assessment of progression-free survival (PFS) and overall survival (OS) was estimated. The percentage of different innate/adaptive immune cell subpopulations was significantly associated with poor risk-related clinical features, including the number of metastatic sites, presence of retroperitoneal, mediastinal, lung, brain and non-pulmonary visceral metastases as well as with the S-stage and International Germ Cell Consensus Classification Group (IGCCCG) risk groups. In univariate analysis, the percentages of neutrophils, eosinophils, dendritic cells type 2, lymphocytes and T cytotoxic cells were significantly associated with PFS, while the neutrophil, non-classical monocyte and lymphocyte percentage were associated with OS. However, all these outcome correlations were not independent of IGCCCG in multivariate analysis. The data indicated a link among different innate/adaptive peripheral immune cell subpopulations in GCT patients. In addition, the association between these subpopulations and tumor characteristics was also investigated. The findings of the present study may contribute to a deeper understanding of the interactions between cancer and innate/adaptive immune response in GCT patients.

9.
Cancers (Basel) ; 13(21)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34771736

RESUMEN

Rete testis invasion (RTI) is an unfavourable prognostic factor for the risk of relapse in clinical stage I (CS I) seminoma patients. Notably, no evidence of difference in the proteome of RTI-positive vs. -negative CS I seminomas has been reported yet. Here, a quantitative proteomic approach was used to investigate RTI-associated proteins. 64 proteins were differentially expressed in RTI-positive compared to -negative CS I seminomas. Of them, 14-3-3γ, ezrin, filamin A, Parkinsonism-associated deglycase 7 (PARK7), vimentin and vinculin, were validated in CS I seminoma patient cohort. As shown by multivariate analysis controlling for clinical confounders, PARK7 and filamin A expression lowered the risk of RTI, while 14-3-3γ expression increased it. Therefore, we suggest that in real clinical biopsy specimens, the expression level of these proteins may reflect prognosis in CS I seminoma patients.

10.
Antioxidants (Basel) ; 10(8)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34439533

RESUMEN

Superoxide radical anion (O2•-) and its derivatives regulate numerous physiological and pathological processes, which are extensively studied. The aim of our work was to utilize KO2 as a source of O2•- and the electron paramagnetic resonance (EPR) spin trapping 5-tert-butoxycarbonyl-5-methyl-1-pyrroline N-oxide (BMPO) technique for the preparation of •BMPO-OOH and/or •BMPO-OH radicals in water solution without DMSO. The method distinguishes the interactions of various compounds with •BMPO-OOH and/or •BMPO-OH radicals over time. Here, we show that the addition of a buffered BMPO-HCl mixture to powdered KO2 formed relatively stable •BMPO-OOH and •BMPO-OH radicals and H2O2, where the •BMPO-OOH/OH ratio depended on the pH. At a final pH of ~6.5-8.0, the concentration of •BMPO-OOH radicals was ≥20 times higher than that of •BMPO-OH, whereas at pH 9.0-10.0, the •BMPO-OH radicals prevailed. The •BMPO-OOH/OH radicals effectively cleaved the plasmid DNA. H2S decreased the concentration of •BMPO-OOH/OH radicals, whereas the selenium derivatives 1-methyl-4-(3-(phenylselanyl) propyl) piperazine and 1-methyl-4-(4-(phenylselanyl) butyl) piperazine increased the proportion of •BMPO-OH over the •BMPO-OOH radicals. In conclusion, the presented approach of using KO2 as a source of O2•-/H2O2 and EPR spin trap BMPO for the preparation of •BMPO-OOH/OH radicals in a physiological solution could be useful to study the biological effects of radicals and their interactions with compounds.

11.
J Fungi (Basel) ; 7(7)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34356922

RESUMEN

Bisphenol A (BPA) is a major component of the most commonly used plastic products, such as disposable plastics, Tetra Paks, cans, sport protective equipment, or medical devices. Due to the accumulation of excessive amounts of plastic waste and the subsequent release of BPA into the environment, BPA is classified as a pollutant that is undesirable in the environment. To date, the most interesting finding is the ability of BPA to act as an endocrine disrupting compound due to its binding to estrogen receptors (ERs), and adverse physiological effects on living organisms may result from this action. Since evidence of the potential pro-oxidizing effects of BPA has accumulated over the last years, herein, we focus on the detection of oxidative stress and its origin following BPA exposure using pulsed-field gel electrophoresis, flow cytometry, fluorescent microscopy, and Western blot analysis. Saccharomyces cerevisiae cells served as a model system, as these cells lack ERs allowing us to dissect the ER-dependent and -independent effects of BPA. Our data show that high concentrations of BPA affect cell survival and cause increased intracellular oxidation in yeast, which is primarily generated in the mitochondrion. However, an acute BPA exposure does not lead to significant oxidative damage to DNA or proteins.

12.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34361047

RESUMEN

Chemoresistance of germ cell tumors (GCTs) represents an intensively studied property of GCTs that is the result of a complicated multifactorial process. One of the driving factors in this process is the tumor microenvironment (TME). Intensive crosstalk between the DNA damage/DNA repair pathways and the TME has already been reported. This study aimed at evaluating the interplay between the immune TME and endogenous DNA damage levels in GCT patients. A cocultivation system consisting of peripheral blood mononuclear cells (PBMCs) from healthy donors and GCT cell lines was used in an in vitro study. The patient cohort included 74 chemotherapy-naïve GCT patients. Endogenous DNA damage levels were measured by comet assay. Immunophenotyping of leukocyte subpopulations was performed using flow cytometry. Statistical analysis included data assessing immunophenotypes, DNA damage levels and clinicopathological characteristics of enrolled patients. The DNA damage level in PBMCs cocultivated with cisplatin (CDDP)-resistant GCT cell lines was significantly higher than in PBMCs cocultivated with their sensitive counterparts. In GCT patients, endogenous DNA damage levels above the cutoff value were independently associated with increased percentages of natural killer cells, CD16-positive dendritic cells and regulatory T cells. The crosstalk between the endogenous DNA damage level and specific changes in the immune TME reflected in the blood of GCT patients was revealed. The obtained data contribute to a deeper understanding of ongoing interactions in the TME of GCTs.


Asunto(s)
Daño del ADN , Leucocitos Mononucleares/inmunología , Neoplasias Testiculares/inmunología , Microambiente Tumoral/inmunología , Adulto , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/inmunología , Línea Celular Tumoral , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos , Humanos , Leucocitos Mononucleares/clasificación , Masculino , Persona de Mediana Edad , Neoplasias Testiculares/tratamiento farmacológico , Neoplasias Testiculares/genética , Neoplasias Testiculares/patología
13.
Antioxidants (Basel) ; 9(10)2020 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-32993108

RESUMEN

Lipid hydroperoxides play an important role in various pathophysiological processes. Therefore, a simple model for organic hydroperoxides could be helpful to monitor the biologic effects of endogenous and exogenous compounds. The electron paramagnetic resonance (EPR) spin-trapping technique is a useful method to study superoxide (O2•-) and hydroxyl radicals. The aim of our work was to use EPR with the spin trap 5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide (BMPO), which, by trapping O2•- produces relatively stable •BMPO-OOH spin-adduct, a valuable model for organic hydroperoxides. We used this experimental setup to investigate the effects of selected sulfur/selenium compounds on •BMPO-OOH and to evaluate the antioxidant potential of these compounds. Second, using the simulation of time-dependent individual BMPO adducts in the experimental EPR spectra, the ratio of •BMPO-OH/•BMPO-OOH-which is proportional to the transformation/decomposition of •BMPO-OOH-was evaluated. The order of potency of the studied compounds to alter •BMPO-OOH concentration estimated from the time-dependent •BMPO-OH/•BMPO-OOH ratio was as follows: Na2S4 > Na2S4/SeO32- > H2S/SeO32- > Na2S2 ~Na2S2/SeO32- ~H2S > SeO32- ~SeO42- ~control. In conclusion, the presented approach of the EPR measurement of the time-dependent ratio of •BMPO-OH/•BMPO-OOH could be useful to study the impact of compounds to influence the transformation of •BMPO-OOH.

14.
Artículo en Inglés | MEDLINE | ID: mdl-32660824

RESUMEN

Germ cell tumour (GCT) patients who fail to respond to chemotherapy or who relapse have a poor prognosis. Timely and accurately stratifying such patients could optimise their therapy. We identified endogenous DNA damage levels as a prognostic marker for progression-free (PFS) and overall (OS) survival in chemotherapy-naïve GCT patients. In the present study, we have extended our previous results and reviewed the prognostic power of DNA damage level in GCTs. Endogenous DNA damage levels were measured with the comet assay. Receiver operator characteristic analysis was applied to determine the optimal cut-off value and to evaluate its prognostic accuracy. PFS and OS were estimated by the Kaplan-Meier method and compared using the log-rank test. Hazard ratio (HR) estimates were calculated by Cox regression analysis. A cut-off value of 6.34 provided the highest sensitivity and specificity, with area under curve values of 0.813 and 0.814 for disease progression and mortality, respectively. A % DNA in tail > 6.34 was significantly associated with shorter PFS (HR = 9.54, 95 % confidence interval [CI]: 3.43-26.55, p < 0.001) and OS (HR = 14.62, 95 % CI: 3.14-67.95, p = 0.001) by univariate analysis. The prognostic value of DNA damage measurement was confirmed by multivariate models (HR = 6.45, 95 % CI: 2.22-18.75, p = 0.001 for PFS and HR = 9.40, 95 % CI: 1.70-52.09, p = 0.010 for OS), when HR was adjusted for relevant clinical categories. The added prognostic value of DNA damage in combination with International Germ Cell Cancer Collaborative Group (IGCCCG) risk groups has been revealed. Endogenous DNA damage is an independent prognosticator for PFS and OS in GCT patients and its clinical use, particularly in combination with IGCCCG risk groups, may help in stratifying these patients.


Asunto(s)
Células Sanguíneas/patología , Daño del ADN/genética , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias de Células Germinales y Embrionarias/patología , Adulto , Células Cultivadas , Ensayo Cometa/métodos , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Femenino , Humanos , Estimación de Kaplan-Meier , Leucocitos Mononucleares/patología , Masculino , Persona de Mediana Edad , Pronóstico , Supervivencia sin Progresión , Modelos de Riesgos Proporcionales , Factores de Riesgo
15.
Int J Mol Sci ; 21(6)2020 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-32235701

RESUMEN

The nucleotide excision repair (NER) pathway is activated in response to a broad spectrum of DNA lesions, including bulky lesions induced by platinum-based chemotherapeutic agents. Expression levels of NER factors and resistance to chemotherapy has been examined with some suggestion that NER plays a role in tumour resistance; however, there is a great degree of variability in these studies. Nevertheless, recent clinical studies have suggested Xeroderma Pigmentosum group A (XPA) protein, a key regulator of the NER pathway that is essential for the repair of DNA damage induced by platinum-based chemotherapeutics, as a potential prognostic and predictive biomarker for response to treatment. XPA functions in damage verification step in NER, as well as a molecular scaffold to assemble other NER core factors around the DNA damage site, mediated by protein-protein interactions. In this review, we focus on the interacting partners and mechanisms of regulation of the XPA protein. We summarize clinical oncology data related to this DNA repair factor, particularly its relationship with treatment outcome, and examine the potential of XPA as a target for small molecule inhibitors.


Asunto(s)
Reparación del ADN , Mapas de Interacción de Proteínas , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , Animales , Reparación del ADN/efectos de los fármacos , Descubrimiento de Drogas , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Mapas de Interacción de Proteínas/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Activación Transcripcional/efectos de los fármacos , Proteína de la Xerodermia Pigmentosa del Grupo A/antagonistas & inhibidores , Proteína de la Xerodermia Pigmentosa del Grupo A/genética
16.
BMC Cancer ; 20(1): 17, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31906898

RESUMEN

BACKGROUND: Germ cell tumours (GCTs) represent a highly curable malignity as they respond well to cisplatin (CDDP)-based chemotherapy. Nevertheless, a small proportion of GCT patients relapse or do not respond to therapy. As this might be caused by an increased capacity to repair CDDP-induced DNA damage, identification of DNA repair biomarkers predicting inadequate or aberrant response to CDDP, and thus poor prognosis for GCT patients, poses a challenge. The objective of this study is to examine the expression levels of the key nucleotide excision repair (NER) factors, XPA, ERCC1 and XPF, in GCT patients and cell lines. METHODS: Two hundred seven GCT patients' specimens with sufficient follow-up clinical-pathological data and pairwise combinations of CDDP-resistant and -sensitive GCT cell lines were included. Immunohistochemistry was used to detect the ERCC1, XPF and XPA protein expression levels in GCT patients' specimen and Western blot and qRT-PCR examined the protein and mRNA expression levels in GCT cell lines. RESULTS: GCT patients with low XPA expression had significantly better overall survival than patients with high expression (hazard ratio = 0.38, 95% confidence interval: 0.12-1.23, p = 0.0228). In addition, XPA expression was increased in the non-seminomatous histological subtype, IGCCCG poor prognosis group, increasing S stage, as well as the presence of lung, liver and non-pulmonary visceral metastases. Importantly, a correlation between inadequate or aberrant CDDP response and XPA expression found in GCT patients was also seen in GCT cell lines. CONCLUSIONS: XPA expression is an additional independent prognostic biomarker for stratifying GCT patients, allowing for improvements in decision-making on treatment for those at high risk of refractoriness or relapse. In addition, it could represent a novel therapeutic target in GCTs.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Reparación del ADN/genética , Neoplasias de Células Germinales y Embrionarias/metabolismo , Neoplasias Testiculares/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Resistencia a Antineoplásicos , Endonucleasas/genética , Endonucleasas/metabolismo , Humanos , Inmunohistoquímica , Masculino , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/metabolismo , Neoplasias de Células Germinales y Embrionarias/tratamiento farmacológico , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias de Células Germinales y Embrionarias/patología , Fosforilación , Pronóstico , Neoplasias Testiculares/tratamiento farmacológico , Neoplasias Testiculares/genética , Neoplasias Testiculares/patología , Proteína de la Xerodermia Pigmentosa del Grupo A/genética
17.
Oncotarget ; 11(51): 4735-4753, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33473258

RESUMEN

Testicular germ cell tumors (TGCTs) represent a well curable malignity due to their exceptional response to cisplatin (CDDP). Despite remarkable treatment results, approximately 5% of TGCT patients develop CDDP resistance and die. Exceptional curability makes TGCTs a highly valuable model system for studying the molecular mechanisms of CDDP sensitivity. Our study was aimed at revealing difference in gene expression between the CDDP-resistant and -sensitive TGCT cell lines, and hence at identifying candidate genes that could serve as potential biomarkers of CDDP response. Using gene expression array, we identified 281 genes that are differentially expressed in CDDP-resistant compared to -sensitive TGCT cell lines. The expression of 25 genes with the highest fold change was validated by RT-qPCR. Of them, DNMT3L, GAL, IGFBP2, IGFBP7, L1TD1, NANOG, NTF3, POU5F1, SOX2, WNT6, ZFP42, ID2, PCP4, SLC40A1 and TRIB3, displayed comparable expression change in gene expression array and RT-qPCR, when all CDDP-resistant TGCT cell lines were pairwise combined with all -sensitive ones. Products of the identified genes are pluripotency factors, or are involved in processes, such as cell metabolism, proliferation or migration. We propose that, after clinical validation, these genes could serve as prognostic biomarkers for early detection of CDDP response in TGCT patients.

18.
Oxid Med Cell Longev ; 2019: 9847650, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31885828

RESUMEN

Selenium (Se), an essential trace element, and hydrogen sulfide (H2S), an endogenously produced signalling molecule, affect many physiological and pathological processes. However, the biological effects of their mutual interaction have not yet been investigated. Herein, we have studied the biological and antioxidant effects of the products of the H2S (Na2S)/selenite (Na2SeO3) interaction. As detected by the UV-VIS and EPR spectroscopy, the product(s) of the H2S-Na2SeO3 and H2S-SeCl4 interaction scavenged superoxide-derived radicals and reduced ·cPTIO radical depending on the molar ratio and the preincubation time of the applied interaction mixture. The results confirmed that the transient species are formed rapidly during the interaction and exhibit a noteworthy biological activity. In contrast to H2S or selenite acting on their own, the H2S/selenite mixture cleaved DNA in a bell-shaped manner. Interestingly, selenite protected DNA from the cleavage induced by the products of H2S/H2O2 interaction. The relaxation effect of H2S on isolated thoracic aorta was eliminated when the H2S/selenite mixture was applied. The mixture inhibited the H2S biphasic effect on rat systolic and pulse blood pressure. The results point to the antioxidant properties of products of the H2S/selenite interaction and their effect to react with DNA and influence cardiovascular homeostasis. The effects of the products may contribute to explain some of the biological effects of H2S and/or selenite, and they may imply that a suitable H2S/selenite supplement might have a beneficial effect in pathological conditions arisen, e.g., from oxidative stress.


Asunto(s)
Presión Arterial/fisiología , Presión Sanguínea/fisiología , ADN/química , Radicales Libres/química , Sulfuro de Hidrógeno/química , Ácido Selenioso/química , Superóxidos/química , Animales , Antioxidantes/química , Presión Arterial/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Espectroscopía de Resonancia por Spin del Electrón , Sulfuro de Hidrógeno/farmacología , Concentración de Iones de Hidrógeno , Ratas , Ratas Wistar , Ácido Selenioso/farmacología
19.
Clin Genitourin Cancer ; 17(5): e1020-e1025, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31281064

RESUMEN

BACKGROUND: Testicular germ cell tumors (TGCTs) are an excellent example of chemosensitive disease. However, cisplatin-based chemotherapy has significant side effects, including myelosuppression. Previously, we found endogenous DNA damage level in peripheral blood mononuclear cells (PBMCs) to be an independent prognostic marker. In this study, we tested the hypothesis that patients with high endogenous DNA damage levels in PBMCs have an increased risk of developing hematological toxicity. PATIENTS AND METHODS: One hundred twenty chemotherapy-naive TGCT patients treated in the National Cancer Institute and the St Elisabeth Cancer Institute in Bratislava, Slovakia, from 2012 to 2018 were enrolled. All patients received platinum-based chemotherapy with granulocyte colony stimulating factor support. On the day of starting treatment, we measured the DNA damage levels in PBMCs using the comet assay. We used the cutoff level of 5.25, a value previously reported to stratify patients on the basis of their prognosis. We monitored hematological toxicity during the first cycle of chemotherapy. The mean and standard error of the mean were calculated for all variables. RESULTS: Patients with high DNA damage levels (>5.25) had more significant hematological toxicity with significantly lower nadir white blood cell count (P = .001), absolute neutrophil count (P = .013) and absolute lymphocyte count (ALC; P < .001). ALCs on day 0 (P = .005) and day 22 (P = .046) were also significantly lower in patients with high DNA damage levels. CONCLUSION: This study shows that higher endogenous DNA damage levels correlate with increased risk of hematological toxicity in TGCT patients. Hence, the DNA damage levels can be used to select patients for closer monitoring because of a higher risk of acute chemotherapy-related complications.


Asunto(s)
Antineoplásicos/administración & dosificación , Cisplatino/administración & dosificación , Leucocitos Mononucleares/química , Neoplasias de Células Germinales y Embrionarias/tratamiento farmacológico , Neoplasias Testiculares/tratamiento farmacológico , Adulto , Antineoplásicos/efectos adversos , Cisplatino/efectos adversos , Daño del ADN , Femenino , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Humanos , Recuento de Leucocitos , Leucocitos Mononucleares/efectos de los fármacos , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias Testiculares/genética , Adulto Joven
20.
Molecules ; 24(7)2019 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-30959902

RESUMEN

Polysulfides (H2Sx) represent a class of reactive sulfur species (RSS) which includes molecules such as H2S2, H2S3, H2S4, and H2S5, and whose presence and impact in biological systems, when compared to other sulfur compounds, has only recently attracted the wider attention of researchers. Studies in this field have revealed a facet-rich chemistry and biological activity associated with such chemically simple, still unusual inorganic molecules. Despite their chemical simplicity, these inorganic species, as reductants and oxidants, metal binders, surfactant-like "cork screws" for membranes, components of perthiol signalling and reservoirs for inorganic hydrogen sulfide (H2S), are at the centre of complicated formation and transformation pathways which affect numerous cellular processes. Starting from their chemistry, the hidden presence and various roles of polysulfides in biology may become more apparent, despite their lack of clear analytical fingerprints and often murky biochemical footprints. Indeed, the biological chemistry of H2Sx follows many unexplored paths and today, the relationship between H2S and its oxidized H2Sx species needs to be clarified as a matter of "unmistaken identity". Simultaneously, emerging species, such as HSSeSH and SenS8-n, also need to be considered in earnest.


Asunto(s)
Selenio/química , Sulfuros/química , Azufre/química , Sulfuro de Hidrógeno/química , Nanopartículas/química , Oxidación-Reducción , Análisis Espectral , Compuestos de Azufre/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...