Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Front Physiol ; 11: 518, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32581831

RESUMEN

It is well established that diabetes is the major cause of chronic kidney disease worldwide. Both hyperglycemia, and more recently, advanced glycation endproducts, have been shown to play critical roles in the development of kidney disease. Moreover, the renin-angiotensin system along with growth factors and cytokines have also been shown to contribute to the onset and progression of diabetic kidney disease; however, the role of lipids in this context is poorly characterized. The current study aimed to compare the effect of 20 weeks of streptozotocin-induced diabetes or western diet feeding on kidney disease in two different mouse strains, C57BL/6 mice and hyperlipidemic apolipoprotein (apo) E knockout (KO) mice. Mice were fed a chow diet (control), a western diet (21% fat, 0.15% cholesterol) or were induced with streptozotocin-diabetes (55 mg/kg/day for 5 days) then fed a chow diet and followed for 20 weeks. The induction of diabetes was associated with a 3-fold elevation in glycated hemoglobin and an increase in kidney to body weight ratio regardless of strain (p < 0.0001). ApoE deficiency significantly increased plasma cholesterol and triglyceride levels and feeding of a western diet exacerbated these effects. Despite this, urinary albumin excretion (UAE) was elevated in diabetic mice to a similar extent in both strains (p < 0.0001) but no effect was seen with a western diet in either strain. Diabetes was also associated with extracellular matrix accumulation in both strains, and western diet feeding to a lesser extent in apoE KO mice. Consistent with this, an increase in renal mRNA expression of the fibrotic marker, fibronectin, was observed in diabetic C57BL/6 mice (p < 0.0001). In summary, these studies demonstrate disparate effects of diabetes and hyperlipidemia on kidney injury, with features of the diabetic milieu other than lipids suggested to play a more prominent role in driving renal pathology.

3.
J Am Soc Nephrol ; 30(11): 2191-2207, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31511361

RESUMEN

BACKGROUND: Recombinant human relaxin-2 (serelaxin), which has organ-protective actions mediated via its cognate G protein-coupled receptor relaxin family peptide receptor 1 (RXFP1), has emerged as a potential agent to treat fibrosis. Studies have shown that serelaxin requires the angiotensin II (AngII) type 2 receptor (AT2R) to ameliorate renal fibrogenesis in vitro and in vivo. Whether its antifibrotic actions are affected by modulation of the AngII type 1 receptor (AT1R), which is expressed on myofibroblasts along with RXFP1 and AT2R, is unknown. METHODS: We examined the signal transduction mechanisms of serelaxin when applied to primary rat renal and human cardiac myofibroblasts in vitro, and in three models of renal- or cardiomyopathy-induced fibrosis in vivo. RESULTS: The AT1R blockers irbesartan and candesartan abrogated antifibrotic signal transduction of serelaxin via RXFP1 in vitro and in vivo. Candesartan also ameliorated serelaxin's antifibrotic actions in the left ventricle of mice with cardiomyopathy, indicating that candesartan's inhibitory effects were not confined to the kidney. We also demonstrated in a transfected cell system that serelaxin did not directly bind to AT1Rs but that constitutive AT1R-RXFP1 interactions could form. To potentially explain these findings, we also demonstrated that renal and cardiac myofibroblasts expressed all three receptors and that antagonists acting at each receptor directly or allosterically blocked the antifibrotic effects of either serelaxin or an AT2R agonist (compound 21). CONCLUSIONS: These findings have significant implications for the concomitant use of RXFP1 or AT2R agonists with AT1R blockers, and suggest that functional interactions between the three receptors on myofibroblasts may represent new targets for controlling fibrosis progression.


Asunto(s)
Riñón/patología , Miocardio/patología , Miofibroblastos/fisiología , Receptor de Angiotensina Tipo 1/fisiología , Receptor de Angiotensina Tipo 2/fisiología , Receptores Acoplados a Proteínas G/fisiología , Receptores de Péptidos/fisiología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Animales , Bencimidazoles/uso terapéutico , Compuestos de Bifenilo/uso terapéutico , Células Cultivadas , Fibrosis , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 2/agonistas , Receptores Acoplados a Proteínas G/agonistas , Receptores de Péptidos/agonistas , Proteínas Recombinantes , Relaxina/fisiología , Tetrazoles/uso terapéutico
4.
Diabetes ; 66(10): 2691-2703, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28747378

RESUMEN

NADPH oxidase-derived excessive production of reactive oxygen species (ROS) in the kidney plays a key role in mediating renal injury in diabetes. Pathological changes in diabetes include mesangial expansion and accumulation of extracellular matrix (ECM) leading to glomerulosclerosis. There is a paucity of data about the role of the Nox5 isoform of NADPH oxidase in animal models of diabetic nephropathy since Nox5 is absent in the mouse genome. Thus, we examined the role of Nox5 in human diabetic nephropathy in human mesangial cells and in an inducible human Nox5 transgenic mouse exposed to streptozotocin-induced diabetes. In human kidney biopsies, Nox5 was identified to be expressed in glomeruli, which appeared to be increased in diabetes. Colocalization demonstrated Nox5 expression in mesangial cells. In vitro, silencing of Nox5 in human mesangial cells was associated with attenuation of the hyperglycemia and TGF-ß1-induced enhanced ROS production, increased expression of profibrotic and proinflammatory mediators, and increased TRPC6, PKC-α, and PKC-ß expression. In vivo, vascular smooth muscle cell/mesangial cell-specific overexpression of Nox5 in a mouse model of diabetic nephropathy showed enhanced glomerular ROS production, accelerated glomerulosclerosis, mesangial expansion, and ECM protein (collagen IV and fibronectin) accumulation as well as increased macrophage infiltration and expression of the proinflammatory chemokine MCP-1. Collectively, this study provides evidence of a role for Nox5 and its derived ROS in promoting progression of diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas/metabolismo , NADPH Oxidasas/metabolismo , Animales , Western Blotting , Línea Celular , Nefropatías Diabéticas/genética , Ensayo de Inmunoadsorción Enzimática , Humanos , Inflamación/metabolismo , Riñón/metabolismo , Glomérulos Renales/metabolismo , Células Mesangiales/metabolismo , Ratones , Ratones Transgénicos , NADPH Oxidasas/genética , Proteína Quinasa C beta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
Clin Sci (Lond) ; 130(15): 1307-26, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27358027

RESUMEN

Angiotensin II (Ang II) is well-considered to be the principal effector of the renin-angiotensin system (RAS), which binds with strong affinity to the angiotensin II type 1 (AT1R) and type 2 (AT2R) receptor subtype. However, activation of both receptors is likely to stimulate different signalling mechanisms/pathways and produce distinct biological responses. The haemodynamic and non-haemodynamic effects of Ang II, including its ability to regulate blood pressure, maintain water-electrolyte balance and promote vasoconstriction and cellular growth are well-documented to be mediated primarily by the AT1R. However, its biological and functional effects mediated through the AT2R subtype are still poorly understood. Recent studies have emphasized that activation of the AT2R regulates tissue and organ development and provides in certain context a potential counter-regulatory mechanism against AT1R-mediated actions. Thus, this review will focus on providing insights into the biological role of the AT2R, in particular its actions within the renal and cardiovascular system.


Asunto(s)
Angiotensina II/metabolismo , Enfermedades Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Enfermedades Renales/metabolismo , Riñón/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Sistema Renina-Angiotensina , Animales , Fármacos Cardiovasculares/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/fisiopatología , Sistema Cardiovascular/efectos de los fármacos , Sistema Cardiovascular/fisiopatología , Humanos , Riñón/efectos de los fármacos , Riñón/fisiopatología , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/fisiopatología , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 2/agonistas , Sistema Renina-Angiotensina/efectos de los fármacos , Transducción de Señal
6.
Diabetologia ; 59(8): 1778-90, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27168137

RESUMEN

AIMS/HYPOTHESIS: Angiotensin II is well-recognised to be a key mediator in driving the pathological events of diabetes-associated atherosclerosis via signalling through its angiotensin II type 1 receptor (AT1R) subtype. However, its actions via the angiotensin II type 2 receptor (AT2R) subtype are still poorly understood. This study is the first to investigate the role of the novel selective AT2R agonist, Compound 21 (C21) in an experimental model of diabetes-associated atherosclerosis (DAA). METHODS: Streptozotocin-induced diabetic Apoe-knockout mice were treated with vehicle (0.1 mol/l citrate buffer), C21 (1 mg/kg per day), candesartan cilexetil (4 mg/kg per day) or C21 + candesartan cilexetil over a 20 week period. In vitro models of DAA using human aortic endothelial cells and monocyte cultures treated with C21 were also performed. At the end of the experiments, assessment of plaque content and markers of oxidative stress, inflammation and fibrosis were conducted. RESULTS: C21 treatment significantly attenuated aortic plaque deposition in a mouse model of DAA in vivo, in association with a decreased infiltration of macrophages and mediators of inflammation, oxidative stress and fibrosis. On the other hand, combination therapy with C21 and candesartan (AT1R antagonist) appeared to have a limited additive effect in attenuating the pathology of DAA when compared with either treatment alone. Similarly, C21 was found to confer profound anti-atherosclerotic actions at the in vitro level, particularly in the setting of hyperglycaemia. Strikingly, these atheroprotective actions of C21 were completely blocked by the AT2R antagonist PD123319. CONCLUSIONS/INTERPRETATION: Taken together, these findings provide novel mechanistic and potential therapeutic insights into C21 as a monotherapy agent against DAA.


Asunto(s)
Bloqueadores del Receptor Tipo 2 de Angiotensina II/uso terapéutico , Aterosclerosis/etiología , Aterosclerosis/prevención & control , Diabetes Mellitus Experimental/tratamiento farmacológico , Receptor de Angiotensina Tipo 2/metabolismo , Sulfonamidas/uso terapéutico , Tiofenos/uso terapéutico , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Bencimidazoles/uso terapéutico , Compuestos de Bifenilo/uso terapéutico , Línea Celular , Diabetes Mellitus Experimental/complicaciones , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tetrazoles/uso terapéutico
7.
Antioxid Redox Signal ; 25(12): 657-684, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-26906673

RESUMEN

SIGNIFICANCE: Intrarenal oxidative stress plays a critical role in the initiation and progression of diabetic kidney disease (DKD). Enhanced oxidative stress results from overproduction of reactive oxygen species (ROS) in the context of concomitant, insufficient antioxidant pathways. Renal ROS production in diabetes is predominantly mediated by various NADPH oxidases (NOXs), but a defective antioxidant system as well as mitochondrial dysfunction may also contribute. Recent Advances: Effective agents targeting the source of ROS generation hold the promise to rescue the kidney from oxidative damage and prevent subsequent progression of DKD. Critical Issues and Future Directions: In the present review, we summarize and critically analyze molecular and cellular mechanisms that have been demonstrated to be involved in NOX-induced renal injury in diabetes, with particular focus on the role of increased glomerular injury, the development of albuminuria, and tubulointerstitial fibrosis, as well as mitochondrial dysfunction. Furthermore, novel agents targeting NOX isoforms are discussed. Antioxid. Redox Signal. 25, 657-684.


Asunto(s)
Lesión Renal Aguda/genética , Nefropatías Diabéticas/genética , Estrés Oxidativo/genética , Lesión Renal Aguda/patología , Antioxidantes/metabolismo , Nefropatías Diabéticas/patología , Humanos , Riñón/metabolismo , Riñón/patología , NADPH Oxidasas/genética , Especies Reactivas de Oxígeno/metabolismo
8.
Diabetologia ; 59(2): 379-89, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26508318

RESUMEN

AIMS/HYPOTHESIS: Changes in podocyte morphology and function are associated with albuminuria and progression of diabetic nephropathy. NADPH oxidase 4 (NOX4) is the main source of reactive oxygen species (ROS) in the kidney and Nox4 is upregulated in podocytes in response to high glucose. We assessed the role of NOX4-derived ROS in podocytes in vivo in a model of diabetic nephropathy using a podocyte-specific NOX4-deficient mouse, with a major focus on the development of albuminuria and ultra-glomerular structural damage. METHODS: Streptozotocin-induced diabetes-associated changes in renal structure and function were studied in male floxedNox4 and podocyte-specific, NOX4 knockout (podNox4KO) mice. We assessed albuminuria, glomerular extracellular matrix accumulation and glomerulosclerosis, and markers of ROS and inflammation, as well as glomerular basement membrane thickness, effacement of podocytes and expression of the podocyte-specific protein nephrin. RESULTS: Podocyte-specific Nox4 deletion in streptozotocin-induced diabetic mice attenuated albuminuria in association with reduced vascular endothelial growth factor (VEGF) expression and prevention of the diabetes-induced reduction in nephrin expression. In addition, podocyte-specific Nox4 deletion reduced glomerular accumulation of collagen IV and fibronectin, glomerulosclerosis and mesangial expansion, as well as glomerular basement membrane thickness. Furthermore, diabetes-induced increases in renal ROS, glomerular monocyte chemoattractant protein-1 (MCP-1) and protein kinase C alpha (PKC-α) were attenuated in podocyte-specific NOX4-deficient mice. CONCLUSIONS/INTERPRETATION: Collectively, this study shows the deleterious effect of Nox4 expression in podocytes by promoting podocytopathy in association with albuminuria and extracellular matrix accumulation in experimental diabetes, emphasising the role of NOX4 as a target for new renoprotective agents.


Asunto(s)
Citoprotección/genética , Diabetes Mellitus Experimental/complicaciones , Nefropatías Diabéticas/genética , NADPH Oxidasas/genética , Podocitos/metabolismo , Albuminuria/genética , Albuminuria/patología , Animales , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/genética , Nefropatías Diabéticas/patología , Eliminación de Gen , Riñón/metabolismo , Riñón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasa 4 , NADPH Oxidasas/metabolismo , Especificidad de Órganos/genética , Podocitos/patología , Estreptozocina
9.
Curr Protoc Mouse Biol ; 5(2): 85-94, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26069079

RESUMEN

Diabetic nephropathy (DN) is a term used to describe kidney damage cause by diabetes. With DN as one of the leading causes of end-stage renal disease worldwide, there is a strong need for appropriate animal models to study DN pathogenesis and develop therapeutic strategies. To date, most experiments are carried out in mouse models as opposed to other species for several reasons including lower cost, ease of handling, and easy manipulation of the mouse genome to generate transgenic and knockout animals. This unit provides detailed insights and technical knowledge in setting up one of the most widely used models of DN, the streptozotocin (STZ)-induced model. This model has been extensively exploited to study the mechanism of diabetic renal injury. The advantages and limitations of the STZ model and the availability of other genetic models of DN are also discussed.


Asunto(s)
Nefropatías Diabéticas , Modelos Animales de Enfermedad , Técnicas Genéticas , Técnicas Histológicas/métodos , Ratones , Animales , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Humanos , Riñón/efectos de los fármacos , Riñón/patología , Ratones Noqueados , Ratones Transgénicos , Estreptozocina/administración & dosificación , Estreptozocina/efectos adversos
10.
Hypertension ; 65(5): 1073-81, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25776077

RESUMEN

The hemodynamic and nonhemodynamic effects of angiotensin II on diabetic complications are considered to be primarily mediated by the angiotensin II type 1 receptor subtype. However, its biological and functional effect mediated through the angiotensin II type 2 receptor subtype is still unclear. Activation of the angiotensin II type 2 receptors has been postulated to oppose angiotensin II type 1 receptor-mediated actions and thus attenuate fibrosis. This study aimed to elucidate the reno-protective role of the novel selective angiotensin II type 2 receptor agonist, Compound 21, in an experimental model of type 1 diabetic nephropathy. Compound 21 treatment significantly attenuated diabetes mellitus-induced elevated levels of cystatin C, albuminuria, mesangial expansion, and glomerulosclerosis in diabetic mice. Moreover, Compound 21 markedly inhibited the expression of various proteins implicated in oxidative stress, inflammation, and fibrosis, in association with decreased extracellular matrix production. These findings demonstrate that monotherapy of Compound 21 is protective against the progression of experimental diabetic nephropathy by inhibiting renal oxidative stress, inflammation, and fibrosis.


Asunto(s)
Diabetes Mellitus Tipo 1/complicaciones , Nefropatías Diabéticas/prevención & control , Células Mesangiales/metabolismo , Estrés Oxidativo/efectos de los fármacos , Receptor de Angiotensina Tipo 2/agonistas , Sulfonamidas/farmacología , Tiofenos/farmacología , Animales , Células Cultivadas , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/metabolismo , Inmunohistoquímica , Células Mesangiales/efectos de los fármacos , Células Mesangiales/patología , Ratones
11.
Am J Respir Cell Mol Biol ; 50(1): 180-92, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23980699

RESUMEN

It has been suggested that an inherent airway epithelial repair defect is the root cause of airway remodeling in asthma. However, the relationship between airway epithelial injury and repair, airway remodeling, and airway hyperresponsiveness (AHR) has not been directly examined. We investigated the contribution of epithelial damage and repair to the development of airway remodeling and AHR using a validated naphthalene (NA)-induced murine model of airway injury. In addition, we examined the endogenous versus exogenous role of the epithelial repair peptide trefoil factor 2 (TFF2) in disease pathogenesis. A single dose of NA (200 mg/kg in 10 ml/kg body weight corn oil [CO] vehicle, intraperitoneally) was administered to mice. Control mice were treated with CO (10 ml/kg body weight, intraperitoneally). At 12, 24, 48, and 72 hours after NA or CO injection, AHR and various measures of airway remodeling were examined by invasive plethysmography and morphometric analyses, respectively. TFF2-deficient mice and intranasal treatment were used to examine the role of the epithelial repair peptide. NA treatment induced denudation and apoptosis of airway epithelial cells, goblet cell metaplasia, elevated AHR, and increased levels of endogenous TFF2. Airway epithelial changes peaked at 12 hours after NA treatment, whereas airway remodeling changes were observed from 48 hours. TFF2 was protective against epithelial damage and induced remodeling and was found to mediate organ protection via a platelet-derived growth factor-associated mechanism. Our findings directly demonstrate the contribution of epithelial damage to airway remodeling and AHR and suggest that preventing airway epithelial damage and promoting epithelial repair may have therapeutic implications for asthma treatment.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Asma/fisiopatología , Células Epiteliales/patología , Remodelación de las Vías Aéreas (Respiratorias)/genética , Animales , Apoptosis/genética , Asma/genética , Proliferación Celular , Colágeno/genética , Factor de Crecimiento del Tejido Conjuntivo/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Pulmón/fisiopatología , Metaplasia/genética , Metaplasia/fisiopatología , Ratones , Ratones Endogámicos C57BL , Péptidos/genética , Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Crecimiento Transformador beta1/genética , Factor Trefoil-2 , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...