Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
3.
Microbiologyopen ; 3(5): 702-10, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25065852

RESUMEN

Campylobacter jejuni is one of the most successful food-borne human pathogens. Here we use electron cryotomography to explore the ultrastructure of C. jejuni cells in logarithmically growing cultures. This provides the first look at this pathogen in a near-native state at macromolecular resolution (~5 nm). We find a surprisingly complex polar architecture that includes ribosome exclusion zones, polyphosphate storage granules, extensive collar-shaped chemoreceptor arrays, and elaborate flagellar motors.


Asunto(s)
Infecciones por Campylobacter/microbiología , Campylobacter jejuni/ultraestructura , Polaridad Celular , Campylobacter jejuni/fisiología , Microscopía por Crioelectrón , Humanos , Orgánulos/ultraestructura
4.
Cell ; 155(7): 1451-63, 2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-24315484

RESUMEN

Neurodevelopmental disorders, including autism spectrum disorder (ASD), are defined by core behavioral impairments; however, subsets of individuals display a spectrum of gastrointestinal (GI) abnormalities. We demonstrate GI barrier defects and microbiota alterations in the maternal immune activation (MIA) mouse model that is known to display features of ASD. Oral treatment of MIA offspring with the human commensal Bacteroides fragilis corrects gut permeability, alters microbial composition, and ameliorates defects in communicative, stereotypic, anxiety-like and sensorimotor behaviors. MIA offspring display an altered serum metabolomic profile, and B. fragilis modulates levels of several metabolites. Treating naive mice with a metabolite that is increased by MIA and restored by B. fragilis causes certain behavioral abnormalities, suggesting that gut bacterial effects on the host metabolome impact behavior. Taken together, these findings support a gut-microbiome-brain connection in a mouse model of ASD and identify a potential probiotic therapy for GI and particular behavioral symptoms in human neurodevelopmental disorders.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/microbiología , Tracto Gastrointestinal/microbiología , Animales , Ansiedad/metabolismo , Ansiedad/microbiología , Bacteroides fragilis , Conducta Animal , Encéfalo/fisiología , Niño , Trastornos Generalizados del Desarrollo Infantil/metabolismo , Modelos Animales de Enfermedad , Femenino , Tracto Gastrointestinal/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Microbiota , Probióticos/administración & dosificación
5.
Proc Natl Acad Sci U S A ; 109(31): 12776-81, 2012 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-22802640

RESUMEN

Increasing evidence highlights a role for the immune system in the pathogenesis of autism spectrum disorder (ASD), as immune dysregulation is observed in the brain, periphery, and gastrointestinal tract of ASD individuals. Furthermore, maternal infection (maternal immune activation, MIA) is a risk factor for ASD. Modeling this risk factor in mice yields offspring with the cardinal behavioral and neuropathological symptoms of human ASD. In this study, we find that offspring of immune-activated mothers display altered immune profiles and function, characterized by a systemic deficit in CD4(+) TCRß(+) Foxp3(+) CD25(+) T regulatory cells, increased IL-6 and IL-17 production by CD4(+) T cells, and elevated levels of peripheral Gr-1(+) cells. In addition, hematopoietic stem cells from MIA offspring exhibit altered myeloid lineage potential and differentiation. Interestingly, repopulating irradiated control mice with bone marrow derived from MIA offspring does not confer MIA-related immunological deficits, implicating the peripheral environmental context in long-term programming of immune dysfunction. Furthermore, behaviorally abnormal MIA offspring that have been irradiated and transplanted with immunologically normal bone marrow from either MIA or control offspring no longer exhibit deficits in stereotyped/repetitive and anxiety-like behaviors, suggesting that immune abnormalities in MIA offspring can contribute to ASD-related behaviors. These studies support a link between cellular immune dysregulation and ASD-related behavioral deficits in a mouse model of an autism risk factor.


Asunto(s)
Trastorno Autístico/inmunología , Conducta Animal , Inmunidad Celular , Complicaciones Infecciosas del Embarazo/inmunología , Linfocitos T Reguladores/inmunología , Animales , Antígenos de Diferenciación/inmunología , Trastorno Autístico/etiología , Trastorno Autístico/patología , Diferenciación Celular/inmunología , Femenino , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/patología , Humanos , Interleucina-17/inmunología , Interleucina-6/inmunología , Ratones , Embarazo , Complicaciones Infecciosas del Embarazo/patología , Factores de Riesgo , Linfocitos T Reguladores/patología , Trasplante Homólogo
6.
Curr Opin Immunol ; 23(4): 473-80, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21856139

RESUMEN

Our immune system is charged with the vital mission of identifying invading pathogens and mounting proper inflammatory responses. During the process of clearing infections, the immune system often causes considerable tissue damage. Conversely, if the target of immunity is a member of the resident microbiota, uncontrolled inflammation may lead to host pathology in the absence of infectious agents. Recent evidence suggests that several inflammatory disorders may be caused by specific bacterial species found in most healthy hosts. Although the mechanisms that mediate pathology remain largely unclear, it appears that genetic defects and/or environmental factors may predispose mammals to immune-mediated diseases triggered by potentially pathogenic symbionts of the microbiota. We have termed this class of microbes 'pathobionts', to distinguish them from acquired infectious agents. Herein, we explore burgeoning hypotheses that the combination of an immunocompromised state with colonization by pathobionts together comprise a risk factor for certain inflammatory disorders and gastrointestinal (GI) cancer.


Asunto(s)
Tracto Gastrointestinal/microbiología , Interacciones Huésped-Patógeno/fisiología , Enfermedades Inflamatorias del Intestino/etiología , Metagenoma/fisiología , Animales , Antibacterianos/efectos adversos , Antibacterianos/uso terapéutico , Bacterias/inmunología , Bacterias/patogenicidad , Cocarcinogénesis , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/microbiología , Enterocolitis Seudomembranosa/etiología , Enterocolitis Seudomembranosa/microbiología , Predisposición Genética a la Enfermedad , Helicobacter/inmunología , Helicobacter/patogenicidad , Interacciones Huésped-Patógeno/inmunología , Humanos , Huésped Inmunocomprometido , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/fisiopatología , Metagenoma/inmunología , Ratones , Ratones SCID , Modelos Biológicos , Especificidad de la Especie , Sobreinfección , Simbiosis
7.
Adv Immunol ; 107: 243-74, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21034976

RESUMEN

All animals live in symbiosis. Shaped by eons of co-evolution, host-bacterial associations have developed into prosperous relationships creating mechanisms for mutual benefits to both microbe and host. No better example exists in biology than the astounding numbers of bacteria harbored by the lower gastrointestinal tract of mammals. The mammalian gut represents a complex ecosystem consisting of an extraordinary number of resident commensal bacteria existing in homeostasis with the host's immune system. Most impressive about this relationship may be the concept that the host not only tolerates, but has evolved to require colonization by beneficial microorganisms, known as commensals, for various aspects of immune development and function. The microbiota provides critical signals that promote maturation of immune cells and tissues, leading to protection from infections by pathogens. Gut bacteria also appear to contribute to non-infectious immune disorders such as inflammatory bowel disease and autoimmunity. How the microbiota influences host immune responses is an active area of research with important implications for human health. This review synthesizes emerging findings and concepts that describe the mutualism between the microbiota and mammals, specifically emphasizing the role of gut bacteria in shaping an immune response that mediates the balance between health and disease. Unlocking how beneficial bacteria affect the development of the immune system may lead to novel and natural therapies based on harnessing the immunomodulatory properties of the microbiota.


Asunto(s)
Inmunidad Mucosa/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Simbiosis/inmunología , Animales , Humanos , Tolerancia Inmunológica
8.
Cell Host Microbe ; 7(4): 265-276, 2010 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-20413095

RESUMEN

The gastrointestinal tract harbors a diverse microbiota that has coevolved with mammalian hosts. Though most associations are symbiotic or commensal, some resident bacteria (termed pathobionts) have the potential to cause disease. Bacterial type VI secretion systems (T6SSs) are one mechanism for forging host-microbial interactions. Here we reveal a protective role for the T6SS of Helicobacter hepaticus, a Gram-negative bacterium of the intestinal microbiota. H. hepaticus mutants with a defective T6SS display increased numbers within intestinal epithelial cells (IECs) and during intestinal colonization. Remarkably, the T6SS directs an anti-inflammatory gene expression profile in IECs, and CD4+ T cells from mice colonized with T6SS mutants produce increased interleukin-17 in response to IECs presenting H. hepaticus antigens. Thus, the H. hepaticus T6SS limits colonization and intestinal inflammation, promoting a balanced relationship with the host. We propose that disruption of such balances contributes to human disorders such as inflammatory bowel disease and colon cancer.


Asunto(s)
Proteínas Bacterianas/fisiología , Helicobacter hepaticus/inmunología , Helicobacter hepaticus/patogenicidad , Interacciones Huésped-Patógeno , Sustancias Macromoleculares/metabolismo , Proteínas de la Membrana/fisiología , Animales , Proteínas Bacterianas/genética , Linfocitos T CD4-Positivos/microbiología , Recuento de Colonia Microbiana , ADN Bacteriano/química , ADN Bacteriano/genética , Células Epiteliales/microbiología , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Helicobacter hepaticus/genética , Humanos , Evasión Inmune , Interleucina-17/biosíntesis , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Modelos Biológicos , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
9.
Cell Host Microbe ; 5(1): 8-12, 2009 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-19154983

RESUMEN

Proinflammatory T helper 17 (Th17) cells control infections caused by microbial pathogens. Surprisingly, several recent reports now reveal that symbiotic gut bacteria modulate Th17 cell differentiation and function in the gastrointestinal tract. As various autoimmune and allergic disorders are mediated by uncontrolled T cell responses, immune regulation by the microbiota may have direct implications for human health.


Asunto(s)
Bacterias/inmunología , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Humanos
10.
Hum Mol Genet ; 15(17): 2623-35, 2006 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16870691

RESUMEN

Directed differentiation of human embryonic stem cells (hESCs) into specific somatic cells holds great promise for cell replacement therapies. However, it is unclear if in vitro hESC differentiation causes any epigenetic abnormality such as hypermethylation of CpG islands. Using a differential methylation hybridization method, we identified 65 CpG islands (out of 4608 CpG islands or 1.4%) that exhibited increased DNA methylation during the conversion of hESCs into neural progenitor/stem cells (NPCs). These methylated CpG islands belong to genes in cell metabolism, signal transduction and cell differentiation, which are distinctively different from oncogenic CpG island hypermethylation observed in cancer-related genes during tumorigenesis. We further determined that methylation in these CpG islands, which is probably triggered by de novo DNA methyltransferase Dnmt3a, is abnormally higher in hESC-NPCs than in primary NPCs and astrocytes. Correlating with hypermethylation in promoter CpG islands of metabolic enzyme gene CPT1A and axoneme apparatus gene SPAG6, levels of CPT1A and SPAG6 mRNAs are significantly reduced in hESC-NPCs when compared with hESCs or primary neural cells. Because CPT1A is involved in lipid metabolism and CPT1A deficiency in human is associated with the hypoketotic hypoglycemia disorder, the reduced CPT1A expression in hESC-NPCs raises a potential concern for the suitability of these cells in cell transplantation. Collectively, our data show that abnormal CpG island methylation takes place in a subset of genes during the differentiation/expansion of hESC derivatives under current culture conditions, which may need to be monitored and corrected in future cell transplantation studies.


Asunto(s)
Diferenciación Celular , Islas de CpG , Metilación de ADN , Embrión de Mamíferos/citología , Células Madre/fisiología , Astrocitos/fisiología , Línea Celular , ADN (Citosina-5-)-Metiltransferasas/fisiología , ADN Metiltransferasa 3A , Perfilación de la Expresión Génica , Silenciador del Gen , Humanos , Leucocitos/fisiología , Neoplasias/genética , Neoplasias/metabolismo , Neuronas/fisiología , Factor 3 de Transcripción de Unión a Octámeros/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...