Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Syst ; 12(8): 810-826.e4, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34146472

RESUMEN

The recent advent of CRISPR and other molecular tools enabled the reconstruction of cell lineages based on induced DNA mutations and promises to solve the ones of more complex organisms. To date, no lineage reconstruction algorithms have been rigorously examined for their performance and robustness across dataset types and number of cells. To benchmark such methods, we decided to organize a DREAM challenge using in vitro experimental intMEMOIR recordings and in silico data for a C. elegans lineage tree of about 1,000 cells and a Mus musculus tree of 10,000 cells. Some of the 22 approaches submitted had excellent performance, but structural features of the trees prevented optimal reconstructions. Using smaller sub-trees as training sets proved to be a good approach for tuning algorithms to reconstruct larger trees. The simulation and reconstruction methods here generated delineate a potential way forward for solving larger cell lineage trees such as in mouse.


Asunto(s)
Benchmarking , Caenorhabditis elegans , Algoritmos , Animales , Caenorhabditis elegans/genética , Linaje de la Célula/genética , Simulación por Computador , Ratones
2.
Science ; 372(6538)2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33833095

RESUMEN

During multicellular development, spatial position and lineage history play powerful roles in controlling cell fate decisions. Using a serine integrase-based recording system, we engineered cells to record lineage information in a format that can be read out in situ. The system, termed integrase-editable memory by engineered mutagenesis with optical in situ readout (intMEMOIR), allowed in situ reconstruction of lineage relationships in cultured mouse cells and flies. intMEMOIR uses an array of independent three-state genetic memory elements that can recombine stochastically and irreversibly, allowing up to 59,049 distinct digital states. It reconstructed lineage trees in stem cells and enabled simultaneous analysis of single-cell clonal history, spatial position, and gene expression in Drosophila brain sections. These results establish a foundation for microscopy-readable lineage recording and analysis in diverse systems.


Asunto(s)
Linaje de la Célula , Expresión Génica , Células Madre Embrionarias de Ratones/citología , Neuronas/citología , Análisis de la Célula Individual , Animales , Encéfalo/citología , Línea Celular , Células Clonales/citología , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Perfilación de la Expresión Génica , Respuesta al Choque Térmico , Hibridación Fluorescente in Situ , Integrasas/metabolismo , Ratones , Mutagénesis , Análisis Espacial , Imagen de Lapso de Tiempo , Transcripción Genética
3.
Nature ; 541(7635): 107-111, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-27869821

RESUMEN

Reconstructing the lineage relationships and dynamic event histories of individual cells within their native spatial context is a long-standing challenge in biology. Many biological processes of interest occur in optically opaque or physically inaccessible contexts, necessitating approaches other than direct imaging. Here we describe a synthetic system that enables cells to record lineage information and event histories in the genome in a format that can be subsequently read out of single cells in situ. This system, termed memory by engineered mutagenesis with optical in situ readout (MEMOIR), is based on a set of barcoded recording elements termed scratchpads. The state of a given scratchpad can be irreversibly altered by CRISPR/Cas9-based targeted mutagenesis, and later read out in single cells through multiplexed single-molecule RNA fluorescence hybridization (smFISH). Using MEMOIR as a proof of principle, we engineered mouse embryonic stem cells to contain multiple scratchpads and other recording components. In these cells, scratchpads were altered in a progressive and stochastic fashion as the cells proliferated. Analysis of the final states of scratchpads in single cells in situ enabled reconstruction of lineage information from cell colonies. Combining analysis of endogenous gene expression with lineage reconstruction in the same cells further allowed inference of the dynamic rates at which embryonic stem cells switch between two gene expression states. Finally, using simulations, we show how parallel MEMOIR systems operating in the same cell could enable recording and readout of dynamic cellular event histories. MEMOIR thus provides a versatile platform for information recording and in situ, single-cell readout across diverse biological systems.


Asunto(s)
Linaje de la Célula , Perfilación de la Expresión Génica/métodos , Hibridación Fluorescente in Situ/métodos , Células Madre Embrionarias de Ratones/citología , Imagen Individual de Molécula/métodos , Análisis de la Célula Individual/métodos , Animales , Sistemas CRISPR-Cas/genética , Proliferación Celular , Simulación por Computador , Ratones , Mutagénesis , ARN/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA