Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
bioRxiv ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38562863

RESUMEN

Candida auris , a multidrug-resistant human fungal pathogen, was first identified in 2009 in Japan. Since then, systemic C. auris infections have now been reported in more than 50 countries, with mortality rates of 30-60%. A major contributing factor to its high inter- and intrahospital clonal transmission is that C. auris, unlike most Candida species, displays unique skin tropism and can stay on human skin for a prolonged period. However, the molecular mechanisms responsible for C. auris skin colonization, intradermal persistence, and systemic virulence are poorly understood. Here, we report that C. auris Hog1 mitogen-activated protein kinase (MAPK) is essential for efficient skin colonization, intradermal persistence, as well as systemic virulence. RNA-seq analysis of wildtype parental and hog1 Δ mutant strains revealed marked down-regulation of genes involved in processes such as cell adhesion, cell-wall rearrangement, and pathogenesis in hog1 Δ mutant compared to the wildtype parent. Consistent with these data, we found a prominent role for Hog1 in maintaining cell-wall architecture, as the hog1 Δ mutant demonstrated a significant increase in cell-surface ß-glucan exposure and a concomitant reduction in chitin content. Additionally, we observed that Hog1 was required for biofilm formation in vitro and fungal survival when challenged with primary murine macrophages and neutrophils ex vivo . Collectively, these findings have important implications for understanding the C. auris skin adherence mechanisms and penetration of skin epithelial layers preceding bloodstream infections. Importance: Candida auris is a World Health Organization (WHO) fungal priority pathogen and an urgent public health threat recognized by the Centers for Disease Control and Prevention (CDC). C. auris has a unique ability to colonize human skin. It also persists on abiotic surfaces in healthcare environments for an extended period of time. These attributes facilitate the inter- and intrahospital clonal transmission of C. auris . Therefore, understanding C. auris skin colonization mechanisms are critical for infection control, especially in hospitals and nursing homes. However, despite its profound clinical relevance, the molecular and genetic basis of C. auris skin colonization mechanisms are poorly understood. Herein, we present data on the identification of the Hog1 MAP kinase as a key regulator of C. auris skin colonization. These findings lay foundation for further characterization of unique mechanisms that promote fungal persistence on human skin.

2.
J Am Acad Dermatol ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38574764

RESUMEN

Trichophyton indotineae has emerged as a novel dermatophyte species resulting in treatment recalcitrant skin infections. While the earliest reports came from India, T. indotineae has now spread to many parts of the world and is rapidly becoming a global health concern. Accurate identification of T. indotineae requires elaborate mycological investigations which is beyond the domain of routine microbiology testing. Extensive, non-inflammatory and atypical presentations are commonly seen with this novel species. T. indotineae shows an alarmingly high rate of mutations in the squalene epoxidase gene leading to lowered in vitro susceptibility to terbinafine. This has also translated into a lowered clinical response and requirement of a higher dose and much longer durations of treatment with the drug. Although the species remains largely susceptible to itraconazole, prolonged treatment durations are required to achieve cure with itraconazole. Fluconazole and griseofulvin do not have satisfactory in vitro or clinical activity. Apart from requirement of prolonged treatment durations, relapse postsuccessful treatment is a distressing and yet unexplained consequence of this "species-shift." Use of third generation azoles and combinations of systemic antifungals is unwarranted as both have not demonstrated clear superiority over itraconazole given alone, and the former is an important class of drugs for invasive mycoses.

3.
Lancet Microbe ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38518791

RESUMEN

The effects of climate change and natural disasters on fungal pathogens and the risks for fungal diseases remain incompletely understood. In this literature review, we examined how fungi are adapting to an increase in the Earth's temperature and are becoming more thermotolerant, which is enhancing fungal fitness and virulence. Climate change is creating conditions conducive to the emergence of new fungal pathogens and is priming fungi to adapt to previously inhospitable environments, such as polluted habitats and urban areas, leading to the geographical spread of some fungi to traditionally non-endemic areas. Climate change is also contributing to increases in the frequency and severity of natural disasters, which can trigger outbreaks of fungal diseases and increase the spread of fungal pathogens. The populations mostly affected are the socially vulnerable. More awareness, research, funding, and policies on the part of key stakeholders are needed to mitigate the effects of climate change and disaster-related fungal diseases.

5.
Indian J Dermatol ; 68(5): 525-540, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38099117

RESUMEN

The emergence and spread of Trichophyton indotineae (T. indotineae) has led to a sea change in the prescription practices of clinicians regarding the management of dermatophytic skin infections. An infection easily managed with a few weeks of antifungals, tinea corporis or cruris, is now often chronic and recurrent and requires prolonged treatment. Rising resistance to terbinafine, with documented squalene epoxidase (SQLE) gene mutations, and slow clinical response to itraconazole leave clinicians with limited treatment choices. However, in these testing times, it is essential that the tenets of antifungal stewardship be followed in making therapeutic decisions, and that the existing armamentarium of antifungals be used in rationale ways to counter this extremely common cutaneous infection, while keeping the growing drug resistance among dermatophytes in check. This review provides updated evidence on the use of various systemic antifungals for dermatophytic infection of the glabrous skin, especially with respect to the emerging T. indotineae species, which is gradually becoming a worldwide concern.

6.
PLoS Pathog ; 19(10): e1011698, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37856418

RESUMEN

Candida auris, is an emerging fungal pathogen that can cause life-threatening infections in humans. Unlike many other Candida species that colonize the intestine, C. auris most efficiently colonizes the skin. Such colonization contaminates the patient's environment and can result in rapid nosocomial transmission. In addition, this transmission can lead to outbreaks of systemic infections that have mortality rates between 40% and 60%. C. auris isolates resistant to all known classes of antifungals have been identified and as such, understanding the underlying biochemical mechanisms of how skin colonization initiates and progresses is critical to developing better therapeutic options. With this review, we briefly summarize what is known about horizontal transmission and current tools used to identify, understand, and control C. auris infections.


Asunto(s)
Candidiasis , Humanos , Candidiasis/microbiología , Candida auris , Candida , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Brotes de Enfermedades , Pruebas de Sensibilidad Microbiana
7.
J Clin Microbiol ; 61(11): e0087323, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37882528

RESUMEN

The rapid pace of name changes of medically important fungi is creating challenges for clinical laboratories and clinicians involved in patient care. We describe two sources of name change which have different drivers, at the species versus the genus level. Some suggestions are made here to reduce the number of name changes. We urge taxonomists to provide diagnostic markers of taxonomic novelties. Given the instability of phylogenetic trees due to variable taxon sampling, we advocate to maintain genera at the largest possible size. Reporting of identified species in complexes or series should where possible comprise both the name of the overarching species and that of the molecular sibling, often cryptic species. Because the use of different names for the same species will be unavoidable for many years to come, an open access online database of the names of all medically important fungi, with proper nomenclatural designation and synonymy, is essential. We further recommend that while taxonomic discovery continues, the adaptation of new name changes by clinical laboratories and clinicians be reviewed routinely by a standing committee for validation and stability over time, with reference to an open access database, wherein reasons for changes are listed in a transparent way.


Asunto(s)
Hongos , Humanos , Filogenia , Bases de Datos Factuales , Hongos/genética
8.
Med Mycol ; 61(10)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37793805

RESUMEN

The incidence of invasive fungal disease (IFD) is on the rise due to increasing numbers of highly immunocompromized patients. Nosocomial IFD remains common despite our better understanding of its risk factors and pathophysiology. High-efficiency particulate air filtration with or without laminar air flow, frequent air exchanges, a positive pressure care environment, and environmental hygiene, amongst other measures, have been shown to reduce the mould burden in the patient environment. Environmental monitoring for moulds in areas where high-risk patients are cared for, such as hematopoietic cell transplant units, has been considered an adjunct to other routine environmental precautions. As a collaborative effort between authors affiliated to the Infection Prevention and Control Working Group and the Fungal Infection Working Group of the International Society of Antimicrobial Chemotherapy (ISAC), we reviewed the English language literature and international guidance to describe the evidence behind the need for environmental monitoring for filamentous fungi as a quality assurance approach with an emphasis on required additional precautions during periods of construction. Many different clinical sampling approaches have been described for air, water, and surface sampling with significant variation in laboratory methodologies between reports. Importantly, there are no agreed-upon thresholds that correlate with an increase in the clinical risk of mould infections. We highlight important areas for future research to assure a safe environment for highly immunocompromized patients.


Mould infections have a high mortality in high-risk patients. Ventilation engineering significantly reduces the risk of acquiring such infections. Environmental sampling for moulds is carried out in many centers in addition to standard precautions. We review the literature on this subject.


Asunto(s)
Aspergilosis , Trasplante de Células Madre Hematopoyéticas , Micosis , Humanos , Aspergilosis/tratamiento farmacológico , Aspergilosis/veterinaria , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Hematopoyéticas/veterinaria , Hongos/genética , Micosis/epidemiología , Micosis/prevención & control , Micosis/tratamiento farmacológico , Micosis/veterinaria , Monitoreo del Ambiente
9.
Curr Opin Microbiol ; 75: 102365, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37625261

RESUMEN

COVID-19 pandemic highlighted the complications of secondary fungal infections that occurred globally in severe cases of coronavirus disease managed in the intensive care units. Furthermore, varied underlying host factors, such as preexisting immunosuppression, the use of immunomodulatory agents, and invasive procedures predisposing lung tissues to fungal colonization and proliferation, caused increased susceptibility to fungal infections in COVID-19 patient populations. These invasive fungal infections directly impact the overall length of hospitalization and mortality. The most commonly reported fungal infections in patients with COVID-19 include aspergillosis, invasive candidiasis, and mucormycosis. An overall worldwide increase in the prevalence of candidiasis and aspergillosis was observed in COVID-19 patients , whereas outbreaks of mucormycosis were mainly recorded from India. Diagnostic challenges and limited antifungal treatment options make secondary fungal infections among COVID-19 patients more burdensome, which results in improper management and increased mortality.


Asunto(s)
Aspergilosis , COVID-19 , Candidiasis , Coinfección , Mucormicosis , Humanos , Mucormicosis/tratamiento farmacológico , Pandemias
10.
Nat Rev Microbiol ; 21(12): 818-832, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37648790

RESUMEN

During recent decades, the emergence of pathogenic fungi has posed an increasing public health threat, particularly given the limited number of antifungal drugs available to treat invasive infections. In this Review, we discuss the global emergence and spread of three emerging antifungal-resistant fungi: Candida auris, driven by global health-care transmission and possibly facilitated by climate change; azole-resistant Aspergillus fumigatus, driven by the selection facilitated by azole fungicide use in agricultural and other settings; and Trichophyton indotineae, driven by the under-regulated use of over-the-counter high-potency corticosteroid-containing antifungal creams. The diversity of the fungi themselves and the drivers of their emergence make it clear that we cannot predict what might emerge next. Therefore, vigilance is critical to monitoring fungal emergence, as well as the rise in overall antifungal resistance.


Asunto(s)
Antifúngicos , Hongos , Humanos , Antifúngicos/farmacología , Aspergillus fumigatus , Azoles/farmacología , Farmacorresistencia Fúngica , Pruebas de Sensibilidad Microbiana
12.
Annu Rev Microbiol ; 77: 583-602, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37406342

RESUMEN

Candida auris is a multidrug-resistant fungal pathogen that presents a serious threat to global human health. Since the first reported case in 2009 in Japan, C. auris infections have been reported in more than 40 countries, with mortality rates between 30% and 60%. In addition, C. auris has the potential to cause outbreaks in health care settings, especially in nursing homes for elderly patients, owing to its efficient transmission via skin-to-skin contact. Most importantly, C. auris is the first fungal pathogen to show pronounced and sometimes untreatable clinical drug resistance to all known antifungal classes, including azoles, amphotericin B, and echinocandins. In this review, we explore the causes of the rapid spread of C. auris. We also highlight its genome organization and drug resistance mechanisms and propose future research directions that should be undertaken to curb the spread of this multidrug-resistant pathogen.


Asunto(s)
Candida auris , Candida , Humanos , Anciano , Candida/genética , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Equinocandinas , Anfotericina B
13.
J Fungi (Basel) ; 9(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37504709

RESUMEN

Candida auris is an emerging global public health threat and is resistant to most antifungal agents. Though fungi are significant pathogens for animals, the role of C. auris in animal health remains unexplored. Here, we analysed the microbial cultures of skin and ear swabs of 87 dogs in Delhi and performed fungal meta-barcode sequencing of ear and skin samples of 7 dogs with confirmed otitis externa (OE). Overall, 4.5% of dogs (4/87) with chronic skin infections contained evidence of C. auris in their ear canal (n = 3) and on their skin surface (n = 1). Of the three OE dogs with C. auris infection/colonisation, a diversity of fungi was observed, and their meta-barcode ITS sequence reads for C. auris ranged from 0.06% to 0.67%. Whole-genome sequencing of six C. auris strains obtained in culture from two dogs showed relatedness with Clade I clinical strains. The report highlights the isolation of C. auris from an animal source; however, the routes of transmission of this yeast to dogs and the clinical significance of transmission between dogs and humans remain to be investigated.

14.
Antimicrob Agents Chemother ; 67(6): e0171622, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37162356

RESUMEN

The number of dermatophytosis cases resistant to terbinafine is increasing all over the world. Therefore, there is a need for antifungal susceptibility testing of dermatophytes for better management of the patients. In the present study, we have evaluated a gradient test (GT) method for testing the susceptibility of dermatophytes to terbinafine. MIC values to terbinafine determined by the EUCAST reference technique and by gradient test were compared for 79 Trichophyton spp. isolates. Overall, MICs were lower with gradient test (MIC50 of 0.002 µg/mL) than with EUCAST (MIC50 of 0.016 µg/mL). Good categorical agreement (>90%) between the 2 techniques was obtained but the essential agreement was variable depending on the batch of gradient test.


Asunto(s)
Arthrodermataceae , Tiña , Humanos , Terbinafina/farmacología , Trichophyton , Antifúngicos/farmacología , Tiña/tratamiento farmacológico , Tiña/microbiología , Farmacorresistencia Fúngica , Pruebas de Sensibilidad Microbiana
15.
Int J Antimicrob Agents ; 62(1): 106846, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37187336

RESUMEN

The COVID-19 pandemic has highlighted the detrimental effect of secondary pathogens in patients with a primary viral insult. In addition to superinfections with bacterial pathogens, invasive fungal infections were increasingly reported. The diagnosis of pulmonary fungal infections has always been challenging; however, it became even more problematic in the setting of COVID-19, particularly regarding the interpretation of radiological findings and mycology test results in patients with these infections. Moreover, prolonged hospitalization in ICU, coupled with underlying host factors. such as preexisting immunosuppression, use of immunomodulatory agents, and pulmonary compromise, caused additional vulnerability to fungal infections in this patient population. In addition, the heavy workload, redeployment of untrained staff, and inconsistent supply of gloves, gowns, and masks during the COVID-19 outbreak made it harder for healthcare workers to strictly adhere to preventive measures for infection control. Taken together, these factors favored patient-to-patient spread of fungal infections, such as those caused by Candida auris, or environment-to-patient transmission, including nosocomial aspergillosis. As fungal infections were associated with increased morbidity and mortality, empirical treatment was overly used and abused in COVID-19-infected patients, potentially contributing to increased resistance in fungal pathogens. The aim of this paper was to focus on essential elements of antifungal stewardship in COVID-19 for three fungal infections, COVID-19-associated candidemia (CAC), -pulmonary aspergillosis (CAPA), and -mucormycosis (CAM).


Asunto(s)
COVID-19 , Candidemia , Humanos , Antifúngicos/uso terapéutico , COVID-19/epidemiología , Pandemias , Candidemia/tratamiento farmacológico , Hongos
16.
mBio ; 14(3): e0063623, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37102715

RESUMEN

Lodderomyces elongisporus is a recently emerging yeast pathogen predominantly reported in adult patients who had immunosuppression and/or intravenous access devices. Here, we report a fungemia outbreak caused by L. elongisporus in a neonatal intensive care unit (NICU) in Delhi, India, from September 2021 to February 2022. All 10 neonates had low birthweight, and nine of the patients survived after amphotericin B treatment. Whole-genome sequence analyses of the patient isolates as well as those from other sources in India grouped them into two clusters: one cluster consists of isolates exclusively from stored apples and the other cluster includes isolates from patients, clinical environments, and stored apples. All outbreak strains from patients were closely related to each other and showed highly similar heterozygosity patterns across all 11 major scaffolds. While overall very similar, strains from the inanimate environment of the same neonatal intensive care unit showed loss of heterozygosity at scaffold 2 (NW_001813676) compared to the patient strains. Interestingly, evidence for recombination was found in all samples. All clinical strains were susceptible to 10 tested antifungal drugs, and comparisons with strains with high fluconazole MICs derived from the surface of stored apples revealed significant genome divergence between the clinical and apple surface strains, including 119 nonsynonymous single nucleotide polymorphisms (SNPs) in 24 triazole resistance-related genes previously found in other Candida spp. Together, our results indicate significant diversity, recombination, and persistence in the hospital setting and a high rate of evolution in this emerging yeast pathogen. IMPORTANCE Lodderomyces elongisporus was initially considered a teleomorph of Candida parapsilosis. However, DNA sequence analyses revealed it as a distinctive species. Invasive infections due to L. elongisporus have been reported globally. We report an outbreak of fungemia due to L. elongisporus in a NICU affecting 10 preterm, low-birthweight neonates during a period of 6 months. The outbreak investigation identified two environmental sites, the railing and the temperature panel of the neonate open care warmer, harboring L. elongisporus. Whole-genome sequencing confirmed that the neonate isolates were closely related to each other whereas strains from the inanimate clinical environment were related to clinical strains but showed a marked loss of heterozygosity. Further, L. elongisporus strains recovered previously from the surface of stored apples showed high fluconazole MICs and alterations in triazole resistance-related genes. Genome-wide SNP comparisons revealed recombination as an important source for genomic diversity during adaptation of L. elongisporus to different environments.


Asunto(s)
Fungemia , Recién Nacido , Adulto , Humanos , Fungemia/tratamiento farmacológico , Fungemia/microbiología , Fluconazol/uso terapéutico , Unidades de Cuidado Intensivo Neonatal , Saccharomyces cerevisiae , Peso al Nacer , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Pruebas de Sensibilidad Microbiana , Genómica , Brotes de Enfermedades
17.
Mycoses ; 66(6): 515-526, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36790120

RESUMEN

BACKGROUND: The aetiology of the major outbreak of COVID-19-associated mucormycosis (CAM) in India in spring 2021 remains incompletely understood. Herein, we provide a multifaceted and multi-institutional analysis of clinical, pathogen-related, environmental and healthcare-related factors during CAM outbreak in the metropolitan New Delhi area. METHODS: We reviewed medical records of all patients diagnosed with biopsy-proven CAM (n = 50) at 7 hospitals in the New Delhi, and NCR area in April-June 2021. Two multivariate logistic regression models were used to compare clinical characteristics of CAM cases with COVID-19-hospitalised contemporary patients as controls (n = 69). Additionally, meteorological parameters and mould spore concentrations in outdoor air were analysed. Selected hospital fomites were cultured. Mucorales isolates from CAM patients were analysed by ITS sequencing and whole-genome sequencing (WGS). RESULTS: Independent risk factors for CAM identified by multivariate analysis were previously or newly diagnosed diabetes mellitus, active cancer and severe COVID-19 infection. Supplemental oxygen, remdesivir therapy and ICU admission for COVID-19 were associated with reduced CAM risk. The CAM incidence peak was preceded by an uptick in environmental spore concentrations in the preceding 3-4 weeks that correlated with increasing temperature, high evaporation and decreasing relative humidity. Rhizopus was the most common genus isolated, but we also identified two cases of the uncommon Mucorales, Lichtheimia ornata. WGS found no clonal population of patient isolates. No Mucorales were cultured from hospital fomites. CONCLUSIONS: An intersection of host and environmental factors contributed to the emergence of CAM. Surrogates of access to advanced COVID-19 treatment were associated with lower CAM risk.


Asunto(s)
COVID-19 , Mucormicosis , Humanos , Mucormicosis/tratamiento farmacológico , Tratamiento Farmacológico de COVID-19 , COVID-19/epidemiología , COVID-19/complicaciones , Factores de Riesgo , Brotes de Enfermedades , India/epidemiología
18.
J Fungi (Basel) ; 9(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36836381

RESUMEN

The emerging pathogen Candida auris has been associated with nosocomial outbreaks on six continents. Genetic analysis indicates simultaneous and independent emergence of separate clades of the species in different geographical locations. Both invasive infection and colonization have been observed, warranting attention due to variable antifungal resistance profiles and hospital transmission. MALDI-TOF based identification methods have become routine in hospitals and research institutes. However, identification of the newly emerging lineages of C. auris yet remains a diagnostic challenge. In this study an innovative liquid chromatography (LC)-high resolution OrbitrapTM mass spectrometry method was used for identification of C. auris from axenic microbial cultures. A set of 102 strains from all five clades and different body locations were investigated. The results revealed correct identification of all C. auris strains within the sample cohort, with an identification accuracy of 99.6% from plate culture, in a time-efficient manner. Furthermore, application of the applied mass spectrometry technology provided the species identification down to clade level, thus potentially providing the possibility for epidemiological surveillance to track pathogen spread. Identification beyond species level is required specially to differentiate between nosocomial transmission and repeated introduction to a hospital.

19.
Int J Antimicrob Agents ; 61(3): 106718, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36640851

RESUMEN

INTRODUCTION: Invasive fungal infections (IFIs) in Asia/Pacific are a particular threat to patients with malignancies, uncontrolled diabetes mellitus or undiagnosed/untreated human immunodeficiency virus infection and acquired immunodeficiency syndrome (HIV/AIDS). Adequate and early access to diagnostic tools and antifungals is essential for IFI clinical management and patient survival. METHODS: Details on institution profile, self-perception on IFI, and access to microscopy, culture, serology, antigen detection, molecular testing, and therapeutic drug monitoring for IFI were collected in a survey. RESULTS: As of June 2022, 235 centres from 40 countries/territories in Asia/Pacific answered the questionnaire. More than half the centres were from six countries: India (25%), China (17%), Thailand (5%), Indonesia, Iran, and Japan (4% each). Candida spp. (93%) and Aspergillus spp. (75%) were considered the most relevant pathogens. Most institutions had access to microscopy (98%) or culture-based approaches (97%). Furthermore, 79% of centres had access to antigen detection, 66% to molecular assays, and 63% to antibody tests. Access to antifungals varied between countries/territories. At least one triazole was available in 93% of the reporting sites (voriconazole [89%] was the most common mould-active azole), whereas 80% had at least one amphotericin B formulation, and 72% had at least one echinocandin. CONCLUSION: According to the replies provided, the resources available for IFI diagnosis and management vary among Asia/Pacific countries/territories. Economical or geographical factors may play a key role in the incidence and clinical handling of this disease burden. Regional cooperation may be a good strategy to overcome shortcomings.


Asunto(s)
Antifúngicos , Infecciones Fúngicas Invasoras , Animales , Humanos , Antifúngicos/uso terapéutico , Micología , Infecciones Fúngicas Invasoras/tratamiento farmacológico , Tailandia , Encuestas y Cuestionarios
20.
Microbiol Spectr ; : e0461822, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36715547

RESUMEN

Candida tropicalis is a clinically important yeast that causes candidemia in humans with a high mortality rate. The yeast primarily infects immunocompromised patients, and causes outbreaks in health care facilities. Antifungal resistant isolates have been reported. We developed a short tandem repeat (STR) typing scheme for C. tropicalis to enable fast, cost-effective, and high-resolution genotyping. For the development of the typing scheme, 6 novel STR markers were selected, combined into 2 multiplex PCRs. In total, 117 C. tropicalis isolates were typed, resulting in the identification of 104 different genotypes. Subsequently, the outcome of STR typing of 10 isolates was compared to single nucleotide polymorphism (SNP) calling from whole-genome sequencing (WGS). Isolates with more than 111 SNPs were differentiated by the typing assay. Two isolates, which were identical according to SNP analysis, were separated by STR typing in 1 marker. To test specificity, the STR typing was applied to 15 related yeast species, and we found no amplification of these targets. For reproducibility testing, 2 isolates were independently typed five times, which showed identical results in each experiment. In summary, we developed a reliable and multiplex STR genotyping for C. tropicalis, which was found to correlate well to SNP calling by WGS. WGS analysis from and extensive collection of isolates is required to establish the precise resolution of this STR assay. IMPORTANCE Candida tropicalis frequently causes candidemia in immunocompromised patients. C. tropicalis infections have a high mortality rate, and the yeast is able to cause outbreaks in health care facilities. Further, antifungal resistant isolates are on the rise. Genotyping is necessary to investigate potential outbreaks. Here, we developed and applied a STR genotyping scheme in order to rapidly genotype isolates with a high-resolution. WGS SNP outcomes were highly comparable with STR typing results. Altogether, we developed a rapid, high-resolution, and specific STR genotyping scheme for C. tropicalis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...