Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 912: 168883, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38040367

RESUMEN

Land-applied biosolids can be a considerable source of microplastics in soils. Previous studies reported microplastics accumulation in soils from biosolid application, however, little is known about the contribution of atmospherically deposited microplastics to agricultural soils. In this study, we quantified and characterized microplastics in soils that have been amended with biosolids over the past 23 years. We also collected atmospheric deposition samples to determine the amount and type of plastics added to soils through atmospheric input over a period of about 2 years. Soil samples were taken from a replicated field trial where biosolids have been applied at rates of 0, 4.8, 6.9, and 9.0 t/ha every second crop. The biosolids were anaerobically digested and dewatered, and were applied by spreading onto the soil surface. Soil and atmospheric samples were extracted for microplastics by Fenton's reaction to remove organic matter followed by flotation in a zinc chloride solution to separate plastic from soil particles. Samples were analyzed for microplastics by optical microscopy and Laser Direct Infrared Imaging Analysis (LDIR). The mean number of microplastics identified from biosolids samples was 12,000 particles/kg dry biosolids. The long-term applications of biosolids to the soil led to mean plastics concentrations of 383, 500, and 361 particles/kg dry soil in the 0-10 cm depth for low, medium, and high biosolids application rates, respectively. These plastic concentrations were not significantly different from each other, but significantly higher than those found in non biosolids-amended soil (117 particles/kg dry soil). The dominant plastic types by number found in biosolids were polyurethane, followed by polyethylene, and polyamide. The most abundant plastics in soil samples were polyurethane, polyethylene terephthalate, polyamide, and polyethylene. Atmospheric deposition contributed to 15 particles/kg dry soil per year and was mainly composed of polyamide fibers. This study shows that long-term application of biosolids led to an accumulation of microplastics in soil, but that atmospheric deposition also contributes a considerable input of microplastics.


Asunto(s)
Contaminantes del Suelo , Suelo , Microplásticos , Plásticos , Biosólidos , Poliuretanos , Nylons , Contaminantes del Suelo/análisis , Polietilenos , Aguas del Alcantarillado
2.
Water Res ; 239: 120018, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37201372

RESUMEN

Plastic pollution caused by conventional plastics has promoted the development and use of biodegradable plastics. However, biodegradable plastics do not degrade readily in water; instead, they can generate micro- and nanoplastics. Compared to microplastics, nanoplastics are more likely to cause negative impacts to the aquatic environment due to their smaller size. The impacts of biodegradable nanoplastics highly depend on their aggregation behavior and colloidal stability, which still remain unknown. Here, we studied the aggregation kinetics of biodegradable nanoplastics made of polybutylene adipate co-terephthalate (PBAT) in NaCl and CaCl2 solutions as well as in natural waters before and after weathering. We further studied the effect of proteins on aggregation kinetics with both negative-charged bovine serum albumin (BSA) and positive-charged lysozyme (LSZ). For pristine PBAT nanoplastics (before weathering), Ca2+ destabilized nanoplastic suspensions more aggressively than Na+, with the critical coagulation concentration being 20 mM in CaCl2 vs 325 mM in NaCl. Both BSA and LSZ promoted the aggregation of pristine PBAT nanoplastics, and LSZ showed a more pronounced effect. However, no aggregation was observed for weathered PBAT nanoplastics under most experimental conditions. Further stability tests demonstrated that pristine PBAT nanoplastics aggregated substantially in seawater, but not in freshwater, and only slightly in soil pore water; while weathered PBAT nanoplastics remained stable in all natural waters. These results suggest that biodegradable nanoplastics, especially weathered biodegradable nanoplastics, are highly stable in the aquatic environment, even in the marine environment.


Asunto(s)
Plásticos Biodegradables , Plásticos , Microplásticos , Cloruro de Sodio , Cloruro de Calcio , Albúmina Sérica Bovina , Agua
3.
Front Chem ; 11: 1132233, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936535

RESUMEN

Rapid advancement in nanotechnology has led to the development of a myriad of useful nanomaterials that have novel characteristics resulting from their small size and engineered properties. In particular, two-dimensional (2D) materials have become a major focus in material science and chemistry research worldwide with substantial efforts centered on their synthesis, property characterization, and technological, and environmental applications. Environmental applications of these nanomaterials include but are not limited to adsorbents for wastewater and drinking water treatment, membranes for desalination, and coating materials for filtration. However, it is also important to address the environmental interactions and implications of these nanomaterials in order to develop strategies that minimize their environmental and public health risks. Towards this end, this review covers the most recent literature on the environmental implementations of emerging 2D nanomaterials, thereby providing insights into the future of this fast-evolving field including strategies for ensuring sustainable development of 2D nanomaterials.

4.
Environ Sci Technol ; 57(13): 5296-5304, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36951544

RESUMEN

Agricultural soils are a major reservoir of microplastics, and concerns have arisen about the impacts of microplastics on soil properties and functioning. Here, we measured the physical properties of a silt loam in response to the incorporation of polyester fibers and polypropylene granules over a wide range of concentrations. We further elucidated the underlying mechanisms by determining the role of microplastic shape and the baseline effects from the amendment of soil particles. The incorporation of microplastics into soil tended to increase contact angle and saturated hydraulic conductivity and decrease bulk density and water holding capacity, but not affect aggregate stability. Polyester fibers affected soil physical properties more profoundly than polypropylene granules, due to the vastly different shape of fibers from that of soil particles. However, changes in soil properties were gradual, and significant changes did not occur until a high concentration of microplastics was reached (i.e., 0.5% w/w for polyester fibers and 2% w/w for polypropylene granules). Currently, microplastic concentrations in soils not heavily polluted with plastics are far below these concentrations, and results from this study suggest that microplastics at environmentally relevant concentrations have no significant effects on soil physical properties.


Asunto(s)
Microplásticos , Suelo , Plásticos , Polipropilenos , Poliésteres
5.
Sci Total Environ ; 874: 162427, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-36841399

RESUMEN

Graphene nanomaterials have been commercialized for use in the electronic and biomedical industries, increasing their dissemination into surface waters and subsequent transformation in natural aquatic environment. While the photodegradation of graphene oxide nanomaterials has been investigated in the past, previous research did not consider actual natural aquatic environment and also focused on primarily graphene oxide nanomaterials. In this study, photodegradation of graphene nanomaterials with varying oxidation levels, including graphene oxide (GO) and partially reduced graphene oxide (rGO-2 h) are evaluated in Columbia River Water and compared with each other. Our results indicate that both direct and indirect photolysis of graphene-based nanomaterials will occur simultaneously in natural surface water. However, environmentally relevant concentrations of photosensitizers in surface water are not capable of producing sufficient ·OH to initiate degradation of GO via indirect photolysis. For all conditions tested, GO showed more rapid photodegradation compared to rGO. Overall, direct and indirect photodegradation of graphene oxide nanomaterials in natural surface water is minimal and slow indicating that phototransformation of graphene-based nanomaterials will be insignificant in natural surface water.

6.
Environ Sci Process Impacts ; 24(11): 2129-2139, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36205194

RESUMEN

The erosion of wildfire ash from the forest floor to nearby surface waters presents a concern due to potential contamination and alteration of water quality. Meanwhile, the properties of wildfire ash that drive ash particle stability in aquatic systems, mobilization downstream, and transport of contaminants are not well known. Physicochemical properties of ash samples from three wildfires were characterized to understand the relation of ash color and combustion completeness with particle stability and mobilization in aquatic systems. Generally, lighter colored ash, indicative of greater combustion temperatures, had higher pH, electrical conductivity, specific surface area, and zeta potential, and smaller particle size than darker ash and unburned soils. Zeta potential was used as an indication of particle surface charge. White ash had the greatest mean zeta potential (-31.8 ± -11.5 mV), followed by gray ash and dark gray ash. Black ash had similar zeta potential to unburned soils. However, with adjustment to the same pH range the ash and unburned soils had similar mean zeta potentials, although lighter ashes had high variability. Dark gray ash leached the highest organic carbon and nitrogen while white ash leached the lowest C and N, similar to unburned soils. The results suggest that high combustion temperature wildfire ash particles will have greater potential for mobilization downstream and may be more stable in both natural and engineered water systems. However, the high organic matter released from dark gray ashes will likely increase particle stability through steric repulsion. More stable particles have greater potential for downstream transport to aquatic ecosystems or water supplies and increase the possibility of post-fire contamination from ash.


Asunto(s)
Incendios Forestales , Ecosistema , Bosques , Calidad del Agua , Suelo/química
7.
Sci Total Environ ; 793: 148560, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34328971

RESUMEN

The increasing use of engineered nanoparticles (ENPs) in consumer products has led to their increased presence in natural water systems. Here, we present a critical overview of the studies that analyzed the fate and transport behavior of ENPs using real environmental samples. We focused on cerium dioxide, titanium dioxide, silver, carbon nanotubes, and zinc oxide, the widely used ENPs in consumer products. Under field scale settings, the transformation rates of ENPs and subsequently their physicochemical properties (e.g., toxicity and bioavailability) are primarily influenced by the modes of interactions among ENPs and natural organic matter. Other typical parameters include factors related to water chemistry, hydrodynamics, and surface and electronic properties of ENPs. Overall, future nanomanufacturing processes should fully consider the health, safety, and environmental impacts without compromising the functionality of consumer products.


Asunto(s)
Nanopartículas , Nanotubos de Carbono , Contaminantes Químicos del Agua , Óxido de Zinc , Nanopartículas/toxicidad , Plata , Contaminantes Químicos del Agua/análisis
8.
Water Res ; 197: 117066, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33774463

RESUMEN

Interactions of nanoscale plastics with natural organic matter (NOM) and silica surfaces were investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Polyethylene and polystyrene are the most used plastic polymers and most likely to accumulate in the environment, and thus their nano-scale interactions were investigated in this study. Deposition and release of polyethylene and polystyrene nanoscale plastics were investigated on silica and NOM-coated surfaces in the presence of different salt types (NaCl, CaCl2, MgCl2) and ionic strengths (IS). Polyethylene nanoscale plastics showed negligible deposition on silica surface, while significant deposition of polystyrene nanoscale plastics was observed on silica surface. However, both polyethylene and polystyrene nanoscale plastics showed significant deposition on NOM-coated surfaces, with polystyrene showing higher deposition. Increased IS resulted in greater deposition of both polyethylene and polystyrene nanoscale plastics on NOM-coated surfaces due to the functional groups, following DLVO theory. Deposited polyethylene nanoscale plastics on NOM-coated surfaces can be remobilized whereas deposition of polystyrene nanoscale plastics was irreversible on both silica and NOM-coated surfaces. Overall, higher deposition of nanoscale plastics on NOM-coated surfaces indicates that fate and mobility of nanoscale plastics in the environment will be significantly governed by their interactions with NOM.


Asunto(s)
Tecnicas de Microbalanza del Cristal de Cuarzo , Dióxido de Silicio , Concentración Osmolar , Plásticos , Cuarzo , Propiedades de Superficie
9.
J Environ Qual ; 49(6): 1679-1689, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33169390

RESUMEN

Biosolids can be a source of metals and metal nanoparticles. The objective of this study was to quantify and characterize the accumulation and transport of silver (Ag) in a natural soil that has received agronomically recommended rates of biosolids as fertilizer from 1994 to 2017. Total Ag concentrations were measured in biosolids and soil samples collected from 0 to 10 cm between 1996 and 2017. The depth distribution of Ag in soil to 60-cm depth was measured in 2017. Electron microscopy, in combination with X-ray spectroscopy, and X-ray absorption spectroscopy were used to characterize the Ag. The Ag concentrations in the biosolids-amended soil increased steadily from 1996 until 2007, after which the concentrations leveled off at about 1.25 mg Ag kg-1 soil. This corresponded with a decrease of Ag concentrations in biosolids over time. The majority of the Ag (82%) was confined to the top 10 cm of the soil, small amounts (14%) were detected at 10-to-20-cm depth, and trace amounts (4%) were detected at 30-to-40-cm depth. The Ag in the biosolids was identified as S-containing nanoparticles (Ag2 S) with a diameter of 10-12 nm; however, in soil, the Ag concentrations were too low to allow identification of Ag speciation. This study shows that in a real-world field scenario, biosolids applied at agronomic rates represent a long-term, economically viable source of crop nutrients without increasing the concentration of total Ag in soil above a maximum of 1.5 mg Ag kg-1 . This concentration is below estimated ecotoxicity limits for Ag2 S in soil.


Asunto(s)
Nanopartículas del Metal , Contaminantes del Suelo , Biosólidos , Plata/análisis , Suelo , Contaminantes del Suelo/análisis
10.
Water Res ; 171: 115401, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31884379

RESUMEN

The widespread use and release of plastics in nature have raised global concerns about their impact on public health and the environment. While much research has been conducted on macro- and micro-sized plastics, the fate of nanoscale plastics remains unexplored. In this study, the aggregation kinetics and stability of polyethylene and polystyrene nanoscale plastics were investigated over a wide range of aquatic chemistries (pH, salt types (NaCl, CaCl2, MgCl2), ionic strength) relevant to the natural environment. Results showed that salt types and ionic strength had significant effects on the stability of both polyethylene and polystyrene nanoscale plastics, while pH had none. Aggregation and stability of both polyethylene and polystyrene nanoscale plastics in the aquatic environment followed colloidal theory (DLVO theory and Schulze-Hardy rule), similar to other colloidal particles. The critical coagulation concentration (CCC) values of polyethylene nanoscale plastics were lower for CaCl2 (0.1 mM) compared to NaCl (80 mM) and MgCl2 (3 mM). Similarly, CCC values of polystyrene nanospheres were 10 mM for CaCl2, 800 mM for NaCl and 25 mM for MgCl2. It implies that CaCl2 destabilized both polyethylene and polystyrene nanoscale plastics more aggressively than NaCl and MgCl2. Moreover, polystyrene nanospheres are more stable in the aquatic environment than polyethylene nanoscale plastics. However, natural organic matter improved the stability of polyethylene nanoscale plastics in water primarily due to steric repulsion, increasing CCC values to 0.4 mM, 120 mM and 8 mM for CaCl2, NaCl and MgCl2 respectively. Stability studies with various water conditions demonstrated that polyethylene nanoscale plastics will be fairly stable in the natural surface waters. Conversely, synthetic surface water, wastewater, seawater and groundwater rapidly destabilized polyethylene nanoscale plastics. Overall, our findings indicate that significant aqueous transport of nanoscale plastics will be possible in natural surface waters.


Asunto(s)
Electrólitos , Plásticos , Cinética , Polietileno , Poliestirenos
11.
Environ Sci Technol ; 53(5): 2612-2617, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30672699

RESUMEN

A simple and rapid process of ReO4- (as a surrogate of TcO4-) removal from aqueous solutions based on the electrically switched ion exchange (ESIX) method has been demonstrated in this work. Activated carbon-Polypyrrole (AC-PPy) was synthesized from activated carbon and pyrrole by electrodeposition method which was served as an electrically switched ion exchanger for ReO4- removal. The characterization results show that the AC-PPy composite exhibited an excellent loading capacity and a high stability for ions uptake and release. Chronoamperometric studies show that the ESIX treatment could be completed within 60 s, demonstrating the rapid uptake and release of ions. Uptake and release of ReO4- was verified by electrochemical quartz crystal microbalance with dissipation shift (EQCMD) studies. By modulating the electrochemical potential of the AC-PPy, the uptake and release of ReO4- ions can be controlled. Similar trends of uptake and release of ReO4- were observed in cyclic voltammetry (-0.4 to 0.8 V) for five cycles with the EQCMD. X-ray photoelectron spectroscopy (XPS) confirmed the process of ReO4- removal in the AC-PPy composite. Conclusively, the smart material shows excellent efficiency and selectivity for the removal of ReO4- from aqueous solutions.


Asunto(s)
Polímeros , Pirroles , Carbono , Intercambio Iónico , Agua
12.
Environ Sci Technol ; 49(18): 10886-93, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26280799

RESUMEN

The aggregation and stability of graphene oxide (GO) and three successively reduced GO (rGO) nanomaterials were investigated. Reduced GO species were partially reduced GO (rGO-1h), intermediately reduced GO (rGO-2h), and fully reduced GO (rGO-5h). Specifically, influence of pH, ionic strength, ion valence, and presence of natural organic matter (NOM) were studied. Results show that stability of GO in water decreases with successive reduction of functional groups, with pH having the greatest influence on rGO stability. Stability is also dependent on ion valence and the concentration of surface functional groups. While pH did not noticeably affect stability of GO in the presence of 10 mM NaCl, adding 0.1 mM CaCl2 reduced stability of GO with increased pH. This is due to adsorption of Ca(2+) ions on the surface functional groups of GO which reduces the surface charge of GO. As the concentration of rGO functional groups decreased, so did the influence of Ca(2+) ions on rGO stability. Critical coagulation concentrations (CCC) of GO, rGO-1h, and rGO-2h were determined to be ∼ 200 mM, 35 mM, and 30 mM NaCl, respectively. In the presence of CaCl2, CCC values of GO and rGO are quite similar, however. Long-term studies show that a significant amount of rGO-1h and rGO-2h remain stable in Call's Creek surface water, while effluent wastewater readily destabilizes rGO. In the presence NOM and divalent cations (Ca(2+), Mg(2+)), GO aggregates settle from suspension due to GO functional group bridging with NOM and divalent ions. However, rGO-1h and rGO-2h remain suspended due to their lower functional group concentration and resultant reduced NOM-divalent cation bridging. Overall, pH, divalent cations, and NOM can play complex roles in the fate of rGO and GO.


Asunto(s)
Grafito/química , Nanoestructuras/química , Adsorción , Cationes Bivalentes/química , Concentración de Iones de Hidrógeno , Concentración Osmolar , Oxidación-Reducción , Óxidos/química , Cloruro de Sodio , Agua , Contaminantes Químicos del Agua
13.
Water Res ; 78: 37-46, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25898251

RESUMEN

In this study, we investigate the role of simulated sunlight on the physicochemical properties, aggregation, and deposition of graphene oxide (GO) in aquatic environments. Results show that light exposure under varied environmental conditions significantly impacts the physicochemical properties and aggregation/deposition behaviors of GO. Photo-transformation has negligible effects on GO surface charge, however, GO aggregation rates increase with irradiation time for direct photo-transformation under both aerobic and anaerobic conditions. Under anaerobic conditions, photo-reduced GO has a greater tendency to form aggregates than under aerobic conditions. Aggregation of photo-transformed GO is notably influenced by ion valence, with higher aggregation found in the presence of divalent ions versus monovalent, but adding natural organic matter (NOM) reduces it. QCM-D studies show that deposition of GO on surfaces coated with organic matter decreases with increased GO irradiation time, indicating a potential increase in GO mobility due to photo-transformation. General deposition trends on Suwannee River Humic Acid (SRHA)-coated surfaces are control GO > aerobically photo-transformed GO ≈ anaerobically photo-transformed GO. The release of deposited GO from SRHA-coated surfaces decreases with increased irradiation time, indicating that photo-transformed GO is strongly attached to the NOM-coated surface.


Asunto(s)
Grafito/efectos de la radiación , Nanoestructuras/química , Luz Solar , Contaminantes Químicos del Agua/química , Aerobiosis , Anaerobiosis , Biodegradación Ambiental , Grafito/química , Sustancias Húmicas , Cinética , Óxidos/química , Óxidos/efectos de la radiación , Propiedades de Superficie , Contaminantes Químicos del Agua/efectos de la radiación
14.
Environ Sci Technol ; 49(6): 3435-43, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25671674

RESUMEN

Graphene oxide (GO) is promising in scalable production and has useful properties that include semiconducting behavior, catalytic reactivity, and aqueous dispersibility. In this study, we investigated the photochemical fate of GO under environmentally relevant sunlight conditions. The results indicate that GO readily photoreacts under simulated sunlight with the potential involvement of electron-hole pair creation. GO was shown to photodisproportionate to CO2, reduced materials similar to reduced GO (rGO) that are fragmented compared to the starting material, and low molecular-weight (LMW) species. Kinetic studies show that the rate of the initially rapid photoreaction of GO is insensitive to the dissolved oxygen content. In contrast, at longer time points (>10 h), the presence of dissolved oxygen led to a greater production of CO2 than the same GO material under N2-saturated conditions. Regardless, the rGO species themselves persist after extended irradiation equivalent to 2 months in natural sunlight, even in the presence of dissolved oxygen. Overall, our findings indicate that GO phototransforms rapidly under sunlight exposure, resulting in chemically reduced and persistent photoproducts that are likely to exhibit transport and toxic properties unique from parent GO.


Asunto(s)
Grafito/química , Óxidos/química , Luz Solar , Dióxido de Carbono/química , Cinética , Fotoquímica , Agua/química
15.
Environ Sci Technol ; 48(16): 9382-90, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25026416

RESUMEN

Interactions of graphene oxide (GO) nanomaterials with natural organic matter (NOM) and metal oxide surfaces were investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Three different types of NOM were studied: Suwannee River humic and fulvic acids (SRHA and SRFA) and alginate. Aluminum oxide surface was used as a model metal oxide surface. Deposition trends show that GO has the highest attachment on alginate, followed by SRFA, SRHA, and aluminum oxide surfaces, and that GO displayed higher interactions with all investigated surfaces than with silica. Deposition and release behavior of GO on aluminum oxide surface is very similar to positively charged poly-L-lysine-coated surface. Higher interactions of GO with NOM-coated surfaces are attributed to the hydroxyl, epoxy, and carboxyl functional groups of GO; higher deposition on alginate-coated surfaces is attributed to the rougher surface created by the extended conformation of the larger alginate macromolecules. Both ionic strength (IS) and ion valence (Na(+) vs Ca(2+)) had notable impact on interactions of GO with different environmental surfaces. Due to charge screening, increased IS resulted in greater deposition for NOM-coated surfaces. Release behavior of deposited GO varied significantly between different environmental surfaces. All surfaces showed significant release of deposited GO upon introduction of low IS water, indicating that deposition of GO on these surfaces is reversible. Release of GO from NOM-coated surfaces decreased with IS due to charge screening. Release rates of deposited GO from alginate-coated surface were significantly lower than from SRHA and SRFA-coated surfaces due to trapping of GO within the rough surface of the alginate layer.


Asunto(s)
Alginatos/química , Óxido de Aluminio/química , Benzopiranos/química , Grafito/química , Sustancias Húmicas/análisis , Nanoestructuras/química , Contaminantes Químicos del Agua/química , Grafito/toxicidad , Modelos Químicos , Nanoestructuras/toxicidad , Concentración Osmolar , Tecnicas de Microbalanza del Cristal de Cuarzo , Ríos/química , Dióxido de Silicio/química , Propiedades de Superficie , Contaminantes Químicos del Agua/toxicidad
17.
Environ Sci Process Impacts ; 16(2): 194-202, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24362649

RESUMEN

Dissolved organic matter in combination with iron oxides has been shown to facilitate photochemical disinfection through the production of reactive oxygen species (ROS) under UV and visible light. However, due to the extremely short lifetime of these radicals, the disinfection efficiency is limited by the successful transport of ROS to bacterial surfaces. This study was designed to quantitatively investigate three collector surfaces with various potentials to produce ROS [bare quartz, hematite (α-Fe2O3) coated quartz, and Suwannee River humic acid (SRHA)] and the effects of extracellular polymeric substance (EPS) (full or partial coating) and solution chemistry (ionic strength, IS) on the interactions between bacteria and the ROS-producing substrates. With few exceptions, bacterial deposition studies in a parallel plate (PP) flow chamber have revealed increasing cell adhesion with IS. Furthermore, interactions between collector surfaces and cells can be explained by electrostatic forces, with negatively charged SRHA reducing and positively charged α-Fe2O3 enhancing bacterial deposition significantly. Increased deposition was also observed with full EPS content, indicating the ability of EPS to facilitate interaction between cells and surfaces in the aquatic environment. In complementary disinfection studies conducted with simulated light, viability loss was observed for cells fully coated with EPS when attached to α-Fe2O3 under all IS conditions. Based upon our prior study in which EPS was found to not inhibit hydroxyl radical activity toward bacteria, we proposed that EPS might therefore promote disinfection by facilitating cell attachment to ROS-producing surfaces where higher concentrations of ROS are expected at closer proximities to reactive substrates (e.g., SRHA and α-Fe2O3). Our findings on the mechanism and controlling factors of cell interactions with photoactive substrates provide insight as to the role of ionic strength in photochemical disinfection processes.


Asunto(s)
Desinfección/métodos , Escherichia coli O157/efectos de los fármacos , Especies Reactivas de Oxígeno/toxicidad , Adhesión Bacteriana , Escherichia coli O157/crecimiento & desarrollo , Sustancias Húmicas , Cinética , Concentración Osmolar , Procesos Fotoquímicos , Propiedades de Superficie
18.
Environ Sci Technol ; 48(2): 961-9, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24345218

RESUMEN

Interactions of graphene oxide (GO) with silica surfaces were investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Both GO deposition and release were monitored on silica- and poly-l-lysine (PLL) coated surfaces as a function of GO concentration and in NaCl, CaCl2, and MgCl2 as a function of ionic strength (IS). Under favorable conditions (PLL-coated positive surface), GO deposition rates increased with GO concentration, as expected from colloidal theory. Increased NaCl concentration resulted in a greater deposition attachment efficiency of GO on the silica surface, indicating that deposition of GO follows Derjaguin-Landau-Verwey-Overbeek (DLVO) theory; GO deposition rates decreased at high IS, however, due to large aggregate formation. GO critical deposition concentration (CDC) on the silica surface is determined to be 40 mM NaCl which is higher than the reported CDC values of fullerenes and lower than carbon nanotubes. A similar trend is observed for MgCl2 which has a CDC value of 1.2 mM MgCl2. Only a minimal amount of GO (frequency shift <2 Hz) was deposited on the silica surface in CaCl2 due to the bridging ability of Ca(2+) ions with GO functional groups. Significant GO release from silica surface was observed after adding deionized water, indicating that GO deposition is reversible. The release rates of GO were at least 10-fold higher than the deposition rates under similar conditions indicating potential high release and mobility of GO in the environment. Under favorable conditions, a significant amount of GO was released which indicates potential multilayer GO deposition. However, a negligible amount of deposited GO was released in CaCl2 under favorable conditions due to the binding of GO layers with Ca(2+) ions. Release of GO was significantly dependent on salt type with an overall trend of NaCl > MgCl2 > CaCl2.


Asunto(s)
Grafito/química , Nanoestructuras/química , Tecnicas de Microbalanza del Cristal de Cuarzo , Iones , Concentración Osmolar , Polilisina/química , Dióxido de Silicio/química , Cloruro de Sodio/química , Propiedades de Superficie
19.
Environ Sci Technol ; 47(12): 6288-96, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23668881

RESUMEN

While graphene oxide (GO) has been found to be the most toxic graphene-based nanomaterial, its environmental fate is still unexplored. In this study, the aggregation kinetics and stability of GO were investigated using time-resolved dynamic light scattering over a wide range of aquatic chemistries (pH, salt types (NaCl, MgCl2, CaCl2), ionic strength) relevant to natural and engineered systems. Although pH did not have a notable influence on GO stability from pH 4 to 10, salt type and ionic strength had significant effects on GO stability due to electrical double layer compression, similar to other colloidal particles. The critical coagulation concentration (CCC) values of GO were determined to be 44 mM NaCl, 0.9 mM CaCl2, and 1.3 mM MgCl2. Aggregation and stability of GO in the aquatic environment followed colloidal theory (DLVO and Schulze-Hardy rule), even though GO's shape is not spherical. CCC values of GO were lower than reported fullerene CCC values and higher than reported carbon nanotube CCC values. CaCl2 destabilized GO more aggressively than MgCl2 and NaCl due to the binding capacity of Ca(2+) ions with hydroxyl and carbonyl functional groups of GO. Natural organic matter significantly improved the stability of GO in water primarily due to steric repulsion. Long-term stability studies demonstrated that GO was highly stable in both natural and synthetic surface waters, although it settled quickly in synthetic groundwater. While GO remained stable in synthetic influent wastewater, effluent wastewater collected from a treatment plant rapidly destabilized GO, indicating GO will settle out during the wastewater treatment process and likely accumulate in biosolids and sludge. Overall, our findings indicate that GO nanomaterials will be stable in the natural aquatic environment and that significant aqueous transport of GO is possible.


Asunto(s)
Grafito/química , Nanoestructuras/química , Cloruro de Calcio/química , Fulerenos/química
20.
Environ Sci Process Impacts ; 15(1): 275-82, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24592445

RESUMEN

A systematic investigation was conducted to understand the role of aquatic conditions on the aggregate morphology of nano-TiO2, and the subsequent impact on their fate in the environment. In this study, three distinctly sized TiO2 nanoparticles (6, 13, and 23 nm) that had been synthesized with flame spray pyrolysis were employed. Nanoparticle aggregate morphology was measured using static light scattering (SLS) over a wide range of solution chemistry, and in the presence of natural organic matter (NOM). Results showed that primary nanoparticle size can significantly affect the fractal dimension of stable aggregates. A linear relationship was observed between surface areas of primary nanoparticles and fractal dimension indicating that smaller primary nanoparticles can form more compact aggregate in the aquatic environment. The pH, ionic strength, and ion valence also influenced the aggregate morphology of TNPs. Increased pH resulted a decrease in fractal dimension, whereas higher ionic strength resulted increased fractal dimension particularly for monovalent ions. When NOM was present, aggregate fractal dimension was also affected, which was also notably dependent on solution chemistry. Fractal dimension of aggregate increase for 6 nm system in the presence of NOM, whereas a drop in fractal dimension was observed for 13 nm and 23 nm aggregates. This effect was most profound for aggregates comprised of the smallest primary particles suggesting that interactions of NOM with smaller primary nanoparticles are more significant than those with larger ones. The findings from this study will be helpful for the prediction of nanoparticle aggregate fate in the aquatic environment.


Asunto(s)
Nanopartículas/química , Titanio/química , Sustancias Húmicas/análisis , Modelos Químicos , Nanopartículas/análisis , Tamaño de la Partícula , Titanio/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...