Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 360: 121032, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38749138

RESUMEN

Urban development often results in compacted soils, impairing soil structure and reducing the infiltration and retention of stormwater runoff from impervious features. Biochar is a promising organic soil amendment to improve infiltration and retention of stormwater runoff. Soil at the disconnection between impervious and pervious surfaces represents a critical biochar application point for stormwater management from urban impervious features. This study tested the hypothesis that biochar would significantly improve water retention and transmission at four sites, where varying percentages (0%, 2%, and 4% w/w) of biochar were amended to soils between impervious pavement, and pervious grassed slopes. Field-saturated hydraulic conductivity (Ksat) and easily drainable water storage capacity were monitored at these sites for five months (two sites) and 15 months (two sites). At the end of the monitoring periods, the physical, chemical, and biological properties of each site's soil were assessed to understand the impact of biochar on soil aggregation, which is critical for improved soil structure and water infiltration. Results indicated that the field Ksat, drainable water storage capacity, and plant available water content (AWC) were 7.1 ± 3.6 SE, 2.0 ± 0.3 SE, and 2.1 ± 0.3 SE times higher in soils amended with 4% biochar, respectively, compared to the undisturbed soil. Factor analysis elucidated that biochar amendment increased the organic matter content, aggregate mean weight diameter, organo-mineral content, and fungal hyphal length while decreasing the bulk density. Across the 12 biochar/soil combinations, the multiple linear regression models derived from factor analysis described the changes in Ksat and AWC reasonably well with R2 values of 0.51 and 0.71, respectively. Using soil and biochar properties measured before biochar addition, two recent models, developed from laboratory investigations, were found helpful as screening tools to predict biochar's effect on Ksat and AWC at the four field sites. Overall, the findings illustrate that biochar amendment to compacted urban soils can significantly improve soil structure and hydraulic function at impervious/pervious surface disconnections, and screening models help to predict biochar's effectiveness in this context.

2.
J Environ Manage ; 348: 119359, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37871550

RESUMEN

Bioretention systems are planted media filters used in stormwater infrastructure. Maintaining plant growth and survival is challenging because most designs require significant sand. Conventional bioretention soil media (BSM) might be augmented with biochar to make the BSM more favorable to plants, to improve nutrient removal efficiency, and enhance plant survivability during drought while replacing compost/mulch components that have been linked to excess nutrient export. Pots with BSMs representing high and moderate sand content were amended with wood biochar, planted with switchgrass, and subjected to weekly storms for 20 weeks, followed by a 10-week drought. After 20 weeks, 4% biochar amendment significantly increased stormwater infiltration (67%) and plant available water (52%) in the high sand content BSM (NC mix, which meets requirements for the state of North Carolina (US) and contains no compost/mulch), and these favorable hydraulic properties were not statistically different from a moderate sand content, biochar-free BSM with compost/mulch (DE mix, which meets requirements for state of Delaware (US)). While biochar amendment improved plant height (25%), the number of shoots (89%), and total biomass (70%) in the NC mix, these parameters were still less than those in the biochar-free DE mix containing compost/mulch. TN and NO3-1 removal were also improved (28-35%) by biochar amendment to NC mix, and the resulting TN and TP loadings to groundwater were 10 and 7 times less, respectively than biochar-free DE mix with compost/mulch. During the drought period, biochar amendment increased the time to switchgrass wilting by ∼8 days in the NC mix but remained 40% less than the biochar-free DE mix. A recalcitrant carbon-like biochar mitigates some of the deleterious effects of high sand content BSM on plants, and where nutrient pollution is a concern, replacement of compost/mulch with wood biochar in BSM may be desired.


Asunto(s)
Arena , Suelo , Suelo/química , Madera , Carbón Orgánico/química
3.
Environ Sci Technol Lett ; 10(7): 596-603, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37455864

RESUMEN

Plant uptake of xenobiotic compounds is crucial for phytoremediation (including green stormwater infrastructure) and exposure potential during crop irrigation with recycled water. Experimentally determining the plant uptake for every relevant chemical is impractical; therefore, illuminating the role of specific functional groups on the uptake of trace organic contaminants is needed to enhance predictive power. We used benzimidazole derivatives to probe the impact of functional group electrostatic properties and position on plant uptake and metabolism using the hydroponic model plant Arabidopsis thaliana. The greatest plant uptake rates occurred with an electron-withdrawing functional group at the 2 position; however, uptake was still observed with an electron-donating group. An electron-donating group at the 1 position significantly slowed uptake for both benzimidazole- and benzotriazole-based molecules used in this study, indicating possible steric effects. For unsubstituted benzimidazole and benzotriazole structures, the additional heterocyclic nitrogen in benzotriazole increased plant uptake rates compared to benzimidazole. Analysis of quantitative structure-activity relationship parameters for the studied compounds implicates energy-related molecular descriptors as uptake drivers. Despite significantly varied uptake rates, compounds with different functional groups yielded shared metabolites, including an impact on endogenous glutathione production. Although the topic is complex and influenced by multiple factors in the field, this study provides insights into the impact of functional groups on plant uptake, with implications for environmental fate and consumer exposure.

4.
Environ Sci Process Impacts ; 24(10): 1735-1747, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-35943051

RESUMEN

Isothiazolinones biocides are water-soluble, low molecular weight, nitrogenous compounds widely used to prevent microbial growth in a variety of applications including personal care products and building façade materials. Because isothiazolinones from buildings wash off and enter stormwater, interactions with terrestrial plants may represent an important part of the environmental fate of these compounds (e.g., in green stormwater infrastructure). Using the model plant Arabidopsis thaliana grown hydroponically, we observed rapid (≥99% within 24 hours), plant-driven removal of four commonly used isothiazolinones: benzisothiazolinone (BIT), chloromethylisothiazolinone, methylisothiazolinone, and octylisothiazolinone. No significant differences in uptake rate occurred between the four compounds; therefore, BIT was used for further detailed investigation. BIT uptake by Arabidopsis was concentration-dependent in a manner that implicates transporter-mediated substrate inhibition. BIT uptake was also minimally impacted by multiple BIT spikes, suggesting constituently active uptake. BIT plant uptake rate was robust, unaffected by multiple inhibitors. We investigated plant metabolism as a relevant removal process. Proposed major metabolites that significantly increased in the BIT-exposure treatment compared to the control included: endogenous plant compounds nicotinic acid (confirmed with a reference standard) and phenylthioacetohydroximic acid, a possible amino acid-BIT conjugate, and two accurate masses of interest. Two of the compounds (phenylthioacetohydroximic acid and TP 470) were also present in increased amounts in the hydroponic medium after BIT exposure, possibly via plant excretion. Upregulation of endogenous plant compounds is environmentally significant because it demonstrates that BIT impacts plant biology. The rapid plant-driven isothiazolinone removal observed here indicates that plant-isothiazolinone processes could be relevant to the environmental fate of these stormwater compounds.


Asunto(s)
Arabidopsis , Cosméticos , Desinfectantes , Niacina , Desinfectantes/toxicidad , Hidroponía , Cosméticos/química , Agua , Aminoácidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...