Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(9): e30544, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38742051

RESUMEN

Nano-scale interactions between pure metal or metal-oxide components within an oxide matrix can improve functional performance over basic metal oxides. This study reports on the synthesis of monometallic (CuO), bimetallic (CuO-NiO) and trimetallic (CuO-NiO-ZnO) oxide nanoparticles (NPs) via the co-precipitation method and investigation of morphostructural properties. All of the synthesized metal oxide NPs were calcined at 550 °C temperature and annealed under vacuum. In this work, we applied Scherrer formula, modified Scherrer equation, Williamson-Hall plots, and Halder-Wagner plots to calculate the average crystallite size. The XRD data analysis showed that average crystallite sizes of the as-synthesized metal oxide phases were between 4 nm and 76 nm and average diameters calculated from SEM image were between 15 nm and 83 nm. The XRD studies also disclosed that average crystallite size and lattice microstrain of the CuO phases remain almost same (43 nm-46 nm and 2.074×10-3 to 2.665×10-3) for pure CuO and mixed CuO-NiO; but in case of mixed CuO-NiO-ZnO it is found to decrease in size to 11 nm where lattice microstrain increases to 9.653×10-3. Line broadening of diffraction peaks from microstrain contribution was between 0.02 and 0.01. Degree of crystallinity (%) of CuO phases found to decrease from 81 to 71. Dislocation density of CuO phases found to increase from 6.63×10-4nm-2 to 12.68×10-3nm-2. X-ray density of CuO phases increased from 6.48 to 6.53 g/cm3. Where this calculated small dislocation density well agreed with the high crystallinity. Crystal structure and specific surface area were determined from lattice constants and X-ray density. These synthesized nanopowders showed the existence of monoclinic, cubic, and hexagonal phases. The obtained NPs of multi-metal oxide explained more than one phases with different size, shape, and morphology at nano scale.

2.
Heliyon ; 9(1): e12815, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36647348

RESUMEN

Considering the increasing demand for edible oil in recent times, their price in the world market is becoming skyrocketing. In this research, we produced cost-effective edible oil from desilked silkworm pupae (Bombyx mori) applying a facile acid fermentation process, for the first time. The extraction was performed using two different types of organic acids, 3% of each acetic and citric acid. The yield of the extracted oil was 3.52 ± 0.23% from fresh silkworm pupae. The produced oil was then characterized physically and chemically to know its suitability to be used as edible oil. The oil was found with a low peroxide and acid value of 4.82 meq/kg and 1.35 mg KOH/g oil, respectively, and comprised of different fatty acids, in which palmitic acid (32.04%) and oleic acid (34.62%) were in large portions among the total fatty acids. Additionally, the extracted oil included linoleic, α-linolenic, and dihomo-gamma-linolenic acid which have health benefits. The oil was rich with minerals such as Iron, Sodium, Potassium, Calcium, Magnesium, Zinc, and Phosphorus with a negligible concentration of toxic elements such as Manganese, Cobalt, Nickel, Copper, Lead, Cadmium, Chromium, Arsenic, and Silver, indicating a good nutritive value of the extracted oil. Overall, the outcomes of all the characterizations showed that the extracted oil could be used as good edible oil and the corresponding acid fermentation extraction process has the potential to be used as an effective oil extraction method for silkworm pupae.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...