Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 13692, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37608061

RESUMEN

Annual cues in the environment result in physiological changes that allow organisms to time reproduction during periods of optimal resource availability. Understanding how circadian rhythm genes sense these environmental cues and stimulate the appropriate physiological changes in response is important for determining the adaptability of species, especially in the advent of changing climate. A first step involves characterizing the environmental correlates of natural variation in these genes. Band-rumped and Leach's storm-petrels (Hydrobates spp.) are pelagic seabirds that breed across a wide range of latitudes. Importantly, some populations have undergone allochronic divergence, in which sympatric populations use the same breeding sites at different times of year. We investigated the relationship between variation in key functional regions of four genes that play an integral role in the cellular clock mechanism-Clock, Bmal1, Cry2 and Per2-with both breeding season and absolute latitude in these two species complexes. We discovered that allele frequencies in two genes, Clock and Bmal1, differed between seasonal populations in one archipelago, and also correlated with absolute latitude of breeding colonies. These results indicate that variation in these circadian rhythm genes may be involved in allochronic speciation, as well as adaptation to photoperiod at breeding locations.


Asunto(s)
Factores de Transcripción ARNTL , Clima , Estaciones del Año , Aclimatación , Ritmo Circadiano/genética
2.
Dis Model Mech ; 16(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36511140

RESUMEN

Glycogen is the largest cytosolic macromolecule and is kept in solution through a regular system of short branches allowing hydration. This structure was thought to solely require balanced glycogen synthase and branching enzyme activities. Deposition of overlong branched glycogen in the fatal epilepsy Lafora disease (LD) indicated involvement of the LD gene products laforin and the E3 ubiquitin ligase malin in regulating glycogen structure. Laforin binds glycogen, and LD-causing mutations disrupt this binding, laforin-malin interactions and malin's ligase activity, all indicating a critical role for malin. Neither malin's endogenous function nor location had previously been studied due to lack of suitable antibodies. Here, we generated a mouse in which the native malin gene is tagged with the FLAG sequence. We show that the tagged gene expresses physiologically, malin localizes to glycogen, laforin and malin indeed interact, at glycogen, and malin's presence at glycogen depends on laforin. These results, and mice, open the way to understanding unknown mechanisms of glycogen synthesis critical to LD and potentially other much more common diseases due to incompletely understood defects in glycogen metabolism.


Asunto(s)
Glucógeno , Enfermedad de Lafora , Proteínas Tirosina Fosfatasas no Receptoras , Ubiquitina-Proteína Ligasas , Animales , Ratones , Glucógeno/metabolismo , Enfermedad de Lafora/genética , Enfermedad de Lafora/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo
3.
Brain ; 145(7): 2361-2377, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35084461

RESUMEN

Longer glucan chains tend to precipitate. Glycogen, by far the largest mammalian glucan and the largest molecule in the cytosol with up to 55 000 glucoses, does not, due to a highly regularly branched spherical structure that allows it to be perfused with cytosol. Aberrant construction of glycogen leads it to precipitate, accumulate into polyglucosan bodies that resemble plant starch amylopectin and cause disease. This pathology, amylopectinosis, is caused by mutations in a series of single genes whose functions are under active study toward understanding the mechanisms of proper glycogen construction. Concurrently, we are characterizing the physicochemical particularities of glycogen and polyglucosans associated with each gene. These genes include GBE1, EPM2A and EPM2B, which respectively encode the glycogen branching enzyme, the glycogen phosphatase laforin and the laforin-interacting E3 ubiquitin ligase malin, for which an unequivocal function is not yet known. Mutations in GBE1 cause a motor neuron disease (adult polyglucosan body disease), and mutations in EPM2A or EPM2B a fatal progressive myoclonus epilepsy (Lafora disease). RBCK1 deficiency causes an amylopectinosis with fatal skeletal and cardiac myopathy (polyglucosan body myopathy 1, OMIM# 615895). RBCK1 is a component of the linear ubiquitin chain assembly complex, with unique functions including generating linear ubiquitin chains and ubiquitinating hydroxyl (versus canonical amine) residues, including of glycogen. In a mouse model we now show (i) that the amylopectinosis of RBCK1 deficiency, like in adult polyglucosan body disease and Lafora disease, affects the brain; (ii) that RBCK1 deficiency glycogen, like in adult polyglucosan body disease and Lafora disease, has overlong branches; (iii) that unlike adult polyglucosan body disease but like Lafora disease, RBCK1 deficiency glycogen is hyperphosphorylated; and finally (iv) that unlike laforin-deficient Lafora disease but like malin-deficient Lafora disease, RBCK1 deficiency's glycogen hyperphosphorylation is limited to precipitated polyglucosans. In summary, the fundamental glycogen pathology of RBCK1 deficiency recapitulates that of malin-deficient Lafora disease. Additionally, we uncover sex and genetic background effects in RBCK1 deficiency on organ- and brain-region specific amylopectinoses, and in the brain on consequent neuroinflammation and behavioural deficits. Finally, we exploit the portion of the basic glycogen pathology that is common to adult polyglucosan body disease, both forms of Lafora disease and RBCK1 deficiency, namely overlong branches, to show that a unified approach based on downregulating glycogen synthase, the enzyme that elongates glycogen branches, can rescue all four diseases.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo IV , Enfermedad de Lafora , Ubiquitina-Proteína Ligasas , Animales , Regulación hacia Abajo , Glucanos/metabolismo , Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno , Glucógeno Sintasa/genética , Glucógeno Sintasa/metabolismo , Enfermedad de Lafora/genética , Enfermedad de Lafora/patología , Ratones , Epilepsias Mioclónicas Progresivas , Enfermedades del Sistema Nervioso , Proteínas Tirosina Fosfatasas no Receptoras/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
J Biol Chem ; 296: 100150, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33277363

RESUMEN

Malstructured glycogen accumulates over time in Lafora disease (LD) and precipitates into Lafora bodies (LBs), leading to neurodegeneration and intractable fatal epilepsy. Constitutive reduction of glycogen synthase-1 (GYS1) activity prevents murine LD, but the effect of GYS1 reduction later in disease course is unknown. Our goal was to knock out Gys1 in laforin (Epm2a)-deficient LD mice after disease onset to determine whether LD can be halted in midcourse, or even reversed. We generated Epm2a-deficient LD mice with tamoxifen-inducible Cre-mediated Gys1 knockout. Tamoxifen was administered at 4 months and disease progression assessed at 12 months. We verified successful knockout at mRNA and protein levels using droplet digital PCR and Western blots. Glycogen determination and periodic acid-Schiff-diastase staining were used to analyze glycogen and LB accumulation. Immunohistochemistry using astrocytic (glial fibrillary acidic protein) and microglial (ionized calcium-binding adapter molecule 1) markers was performed to investigate neuroinflammation. In the disease-relevant organ, the brain, Gys1 mRNA levels were reduced by 85% and GYS1 protein depleted. Glycogen accumulation was halted at the 4-month level, while LB formation and neuroinflammation were significantly, though incompletely, prevented. Skeletal muscle analysis confirmed that Gys1 knockout inhibits glycogen and LB accumulation. However, tamoxifen-independent Cre recombination precluded determination of disease halting or reversal in this tissue. Our study shows that Gys1 knockdown is a powerful means to prevent LD progression, but this approach did not reduce brain glycogen or LBs to levels below those at the time of intervention. These data suggest that endogenous mechanisms to clear brain LBs are absent or, possibly, compromised in laforin-deficient murine LD.


Asunto(s)
Gliosis/prevención & control , Glucógeno Sintasa/fisiología , Inflamación/prevención & control , Enfermedad de Lafora/patología , Músculo Esquelético/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Animales , Femenino , Gliosis/metabolismo , Gliosis/patología , Inflamación/metabolismo , Inflamación/patología , Enfermedad de Lafora/tratamiento farmacológico , Enfermedad de Lafora/genética , Enfermedad de Lafora/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/patología , Moduladores Selectivos de los Receptores de Estrógeno/administración & dosificación , Tamoxifeno/administración & dosificación
5.
Ann Clin Transl Neurol ; 7(11): 2186-2198, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33034425

RESUMEN

OBJECTIVE: Adult polyglucosan body disease (APBD) is an adult-onset neurological variant of glycogen storage disease type IV. APBD is caused by recessive mutations in the glycogen branching enzyme gene, and the consequent accumulation of poorly branched glycogen aggregates called polyglucosan bodies in the nervous system. There are presently no treatments for APBD. Here, we test whether downregulation of glycogen synthesis is therapeutic in a mouse model of the disease. METHODS: We characterized the effects of knocking out two pro-glycogenic proteins in an APBD mouse model. APBD mice were crossed with mice deficient in glycogen synthase (GYS1), or mice deficient in protein phosphatase 1 regulatory subunit 3C (PPP1R3C), a protein involved in the activation of GYS1. Phenotypic and histological parameters were analyzed and glycogen was quantified. RESULTS: APBD mice deficient in GYS1 or PPP1R3C demonstrated improvements in life span, morphology, and behavioral assays of neuromuscular function. Histological analysis revealed a reduction in polyglucosan body accumulation and of astro- and micro-gliosis in the brains of GYS1- and PPP1R3C-deficient APBD mice. Brain glycogen quantification confirmed the reduction in abnormal glycogen accumulation. Analysis of skeletal muscle, heart, and liver found that GYS1 deficiency reduced polyglucosan body accumulation in all three tissues and PPP1R3C knockout reduced skeletal muscle polyglucosan bodies. INTERPRETATION: GYS1 and PPP1R3C are effective therapeutic targets in the APBD mouse model. These findings represent a critical step toward the development of a treatment for APBD and potentially other glycogen storage disease type IV patients.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno/metabolismo , Glucógeno Sintasa/deficiencia , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Enfermedades del Sistema Nervioso/metabolismo , Animales , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Enfermedad del Almacenamiento de Glucógeno/fisiopatología , Enfermedad del Almacenamiento de Glucógeno/terapia , Ratones , Ratones Noqueados , Enfermedades del Sistema Nervioso/fisiopatología , Enfermedades del Sistema Nervioso/terapia
6.
Cell Rep ; 27(5): 1334-1344.e6, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31042462

RESUMEN

Lafora disease (LD) and adult polyglucosan body disease (APBD) are glycogen storage diseases characterized by a pathogenic buildup of insoluble glycogen. Mechanisms causing glycogen insolubility are poorly understood. Here, in two mouse models of LD (Epm2a-/- and Epm2b-/-) and one of APBD (Gbe1ys/ys), the separation of soluble and insoluble muscle glycogen is described, enabling separate analysis of each fraction. Total glycogen is increased in LD and APBD mice, which, together with abnormal chain length and molecule size distributions, is largely if not fully attributed to insoluble glycogen. Soluble glycogen consists of molecules with distinct chain length distributions and differential corresponding solubility, providing a mechanistic link between soluble and insoluble glycogen in vivo. Phosphorylation states differ across glycogen fractions and mouse models, demonstrating that hyperphosphorylation is not a basic feature of insoluble glycogen. Lastly, model-specific variances in protein and activity levels of key glycogen synthesis enzymes suggest uninvestigated regulatory mechanisms.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno/metabolismo , Glucógeno/metabolismo , Enfermedad de Lafora/metabolismo , Músculo Esquelético/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Animales , Femenino , Glucógeno/química , Sistema de la Enzima Desramificadora del Glucógeno/genética , Enfermedad del Almacenamiento de Glucógeno/genética , Células HEK293 , Humanos , Enfermedad de Lafora/genética , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/patología , Enfermedades del Sistema Nervioso/genética , Fosforilación , Solubilidad
7.
EMBO Mol Med ; 9(7): 906-917, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28536304

RESUMEN

Lafora disease (LD) is a fatal progressive epilepsy essentially caused by loss-of-function mutations in the glycogen phosphatase laforin or the ubiquitin E3 ligase malin. Glycogen in LD is hyperphosphorylated and poorly hydrosoluble. It precipitates and accumulates into neurotoxic Lafora bodies (LBs). The leading LD hypothesis that hyperphosphorylation causes the insolubility was recently challenged by the observation that phosphatase-inactive laforin rescues the laforin-deficient LD mouse model, apparently through correction of a general autophagy impairment. We were for the first time able to quantify brain glycogen phosphate. We also measured glycogen content and chain lengths, LBs, and autophagy markers in several laforin- or malin-deficient mouse lines expressing phosphatase-inactive laforin. We find that: (i) in laforin-deficient mice, phosphatase-inactive laforin corrects glycogen chain lengths, and not hyperphosphorylation, which leads to correction of glycogen amounts and prevention of LBs; (ii) in malin-deficient mice, phosphatase-inactive laforin confers no correction; (iii) general impairment of autophagy is not necessary in LD We conclude that laforin's principle function is to control glycogen chain lengths, in a malin-dependent fashion, and that loss of this control underlies LD.


Asunto(s)
Encéfalo/patología , Fosfatasas de Especificidad Dual/metabolismo , Glucógeno/química , Enfermedad de Lafora/patología , Peso Molecular , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Modelos Animales de Enfermedad , Fosfatasas de Especificidad Dual/deficiencia , Femenino , Glucógeno/metabolismo , Masculino , Ratones Endogámicos C57BL , Fosforilación , Proteínas Tirosina Fosfatasas no Receptoras , Ubiquitina-Proteína Ligasas/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...