Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neuropathol Exp Neurol ; 80(11): 1012­1023, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34524448

RESUMEN

Despite extensive research and aggressive therapies, glioblastoma (GBM) remains a central nervous system malignancy with poor prognosis. The varied histopathology of GBM suggests a landscape of differing microenvironments and clonal expansions, which may influence metabolism, driving tumor progression. Indeed, GBM metabolic plasticity in response to differing nutrient supply within these microenvironments has emerged as a key driver of aggressiveness. Additionally, emergent biophysical and biochemical interactions in the tumor microenvironment (TME) are offering new perspectives on GBM metabolism. Perivascular and hypoxic niches exert crucial roles in tumor maintenance and progression, facilitating metabolic relationships between stromal and tumor cells. Alterations in extracellular matrix and its biophysical characteristics, such as rigidity and topography, regulate GBM metabolism through mechanotransductive mechanisms. This review highlights insights gained from deployment of bioengineering models, including engineered cell culture and mathematical models, to study the microenvironmental regulation of GBM metabolism. Bioengineered approaches building upon histopathology measurements may uncover potential therapeutic strategies that target both TME-dependent mechanotransductive and biomolecular drivers of metabolism to tackle this challenging disease. Longer term, a concerted effort integrating in vitro and in silico models predictive of patient therapy response may offer a powerful advance toward tailoring of treatment to patient-specific GBM characteristics.


Asunto(s)
Bioingeniería , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Modelos Biológicos , Microambiente Tumoral/fisiología , Animales , Humanos
2.
Proc Natl Acad Sci U S A ; 117(21): 11432-11443, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32381732

RESUMEN

The structure and mechanics of many connective tissues are dictated by a collagen-rich extracellular matrix (ECM), where collagen fibers provide topological cues that direct cell migration. However, comparatively little is known about how cells navigate the hyaluronic acid (HA)-rich, nanoporous ECM of the brain, a problem with fundamental implications for development, inflammation, and tumor invasion. Here, we demonstrate that glioblastoma cells adhere to and invade HA-rich matrix using microtentacles (McTNs), which extend tens of micrometers from the cell body and are distinct from filopodia. We observe these structures in continuous culture models and primary patient-derived tumor cells, as well as in synthetic HA matrix and organotypic brain slices. High-magnification and superresolution imaging reveals McTNs are dynamic, CD44-coated tubular protrusions containing microtubules and actin filaments, which respectively drive McTN extension and retraction. Molecular mechanistic studies reveal that McTNs are stabilized by an interplay between microtubule-driven protrusion, actomyosin-driven retraction, and CD44-mediated adhesion, where adhesive and cytoskeletal components are mechanistically coupled by an IQGAP1-CLIP170 complex. McTNs represent a previously unappreciated mechanism through which cells engage nanoporous HA matrix and may represent an important molecular target in physiology and disease.


Asunto(s)
Glioblastoma/patología , Receptores de Hialuranos/metabolismo , Actinas/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Femenino , Técnicas de Inactivación de Genes , Glioblastoma/metabolismo , Humanos , Ácido Hialurónico/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Miosinas/metabolismo , Proteínas de Neoplasias/metabolismo , Oligopéptidos/metabolismo , Técnicas de Cultivo de Órganos , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA