Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Allergy ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686450

RESUMEN

BACKGROUND: The effects of inhaled corticosteroids (ICS) on healthy airways are poorly defined. OBJECTIVES: To delineate the effects of ICS on gene expression in healthy airways, without confounding caused by changes in disease-related genes and disease-related alterations in ICS responsiveness. METHODS: Randomized open-label bronchoscopy study of high-dose ICS therapy in 30 healthy adult volunteers randomized 2:1 to (i) fluticasone propionate 500 mcg bd daily or (ii) no treatment, for 4 weeks. Laboratory staff were blinded to allocation. Biopsies and brushings were analysed by immunohistochemistry, bulk RNA sequencing, DNA methylation array and metagenomics. RESULTS: ICS induced small between-group differences in blood and lamina propria eosinophil numbers, but not in other immunopathological features, blood neutrophils, FeNO, FEV1, microbiome or DNA methylation. ICS treatment upregulated 72 genes in brushings and 53 genes in biopsies, and downregulated 82 genes in brushings and 416 genes in biopsies. The most downregulated genes in both tissues were canonical markers of type-2 inflammation (FCER1A, CPA3, IL33, CLEC10A, SERPINB10 and CCR5), T cell-mediated adaptive immunity (TARP, TRBC1, TRBC2, PTPN22, TRAC, CD2, CD8A, HLA-DQB2, CD96, PTPN7), B-cell immunity (CD20, immunoglobulin heavy and light chains) and innate immunity, including CD48, Hobit, RANTES, Langerin and GFI1. An IL-17-dependent gene signature was not upregulated by ICS. CONCLUSIONS: In healthy airways, 4-week ICS exposure reduces gene expression related to both innate and adaptive immunity, and reduces markers of type-2 inflammation. This implies that homeostasis in health involves tonic type-2 signalling in the airway mucosa, which is exquisitely sensitive to ICS.

2.
PLoS One ; 19(2): e0291947, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38335181

RESUMEN

Tryptase, the most abundant mast cell granule protein, is elevated in severe asthma patients independent of type 2 inflammation status. Higher active ß tryptase allele counts are associated with higher levels of peripheral tryptase and lower clinical benefit from anti-IgE therapies. Tryptase is a therapeutic target of interest in severe asthma and chronic spontaneous urticaria. Active and inactive allele counts may enable stratification to assess response to therapies in asthmatic patient subpopulations. Tryptase gene loci TPSAB1 and TPSB2 have high levels of sequence identity, which makes genotyping a challenging task. Here, we report a targeted next-generation sequencing (NGS) assay and downstream bioinformatics analysis for determining polymorphisms at tryptase TPSAB1 and TPSB2 loci. Machine learning modeling using multiple polymorphisms in the tryptase loci was used to improve the accuracy of genotyping calls. The assay was tested and qualified on DNA extracted from whole blood of healthy donors and asthma patients, achieving accuracy of 96%, 96% and 94% for estimation of inactive α and ßΙΙΙFS tryptase alleles and α duplication on TPSAB1, respectively. The reported NGS assay is a cost-effective method that is more efficient than Sanger sequencing and provides coverage to evaluate known as well as unreported tryptase polymorphisms.


Asunto(s)
Asma , Mastocitos , Humanos , Triptasas/genética , Triptasas/metabolismo , Mastocitos/metabolismo , Genotipo , Asma/tratamiento farmacológico , Asma/genética , Secuenciación de Nucleótidos de Alto Rendimiento
3.
Am J Respir Cell Mol Biol ; 70(5): 414-423, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38315810

RESUMEN

The role of alternative splicing in chronic obstructive pulmonary disease (COPD) is still largely unknown. We aimed to investigate the differences in alternatively splicing events between patients with mild-to-moderate and severe COPD compared with non-COPD control subjects and to identify splicing factors associated with aberrant alternative splicing in COPD. For this purpose, we performed genome-wide RNA-sequencing analysis of bronchial brushings from 23 patients with mild-to-moderate COPD, 121 with severe COPD, and 23 non-COPD control subjects. We found a significant difference in the frequency of alternative splicing events in patients with mild-to-moderate and severe COPD compared with non-COPD control subjects. There were from two to eight times (depending on event type) more differential alternative splicing events in the severe than in the mild-to-moderate stage. The severe COPD samples showed less intron retention and more exon skipping. It is interesting that the transcript levels of the top 10 differentially expressed splicing factors were significantly correlated with the percentage of many alternatively spliced transcripts in severe COPD. The aberrant alternative splicing in severe COPD was predicted to increase the overall protein-coding capacity of gene products. In conclusion, we observed large and significant differences in alternative splicing between bronchial samples of patients with COPD and control subjects, with more events observed in severe than in mild-to-moderate COPD. The changes in the expression of several splicing factors correlated with prevalence of alternative splicing in severe COPD. Alternative splicing can indirectly impact gene expression by changing the relative abundance of protein-coding isoforms potentially influencing pathophysiological changes. The results provide a better understanding of COPD-related alternative splicing changes.


Asunto(s)
Empalme Alternativo , Enfermedad Pulmonar Obstructiva Crónica , Transcriptoma , Humanos , Enfermedad Pulmonar Obstructiva Crónica/genética , Empalme Alternativo/genética , Masculino , Femenino , Transcriptoma/genética , Anciano , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Estudios de Casos y Controles , Exones/genética
4.
ERJ Open Res ; 9(6)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38020574

RESUMEN

Introduction: A subset of COPD patients develops advanced disease with severe airflow obstruction, hyperinflation and extensive emphysema. We propose that the pathogenesis in these patients differs from mild-moderate COPD and is reflected by bronchial gene expression. The aim of the present study was to identify a unique bronchial epithelial gene signature for severe COPD patients. Methods: We obtained RNA sequencing data from bronchial brushes from 123 ex-smokers with severe COPD, 23 with mild-moderate COPD and 23 non-COPD controls. We identified genes specific to severe COPD by comparing severe COPD to non-COPD controls, followed by removing genes that were also differentially expressed between mild-moderate COPD and non-COPD controls. Next, we performed a pathway analysis on these genes and evaluated whether this signature is retained in matched nasal brushings. Results: We identified 219 genes uniquely differentially expressed in severe COPD. Interaction network analysis identified VEGFA and FN1 as the key genes with the most interactions. Genes were involved in extracellular matrix regulation, collagen binding and the immune response. Of interest were 10 genes (VEGFA, DCN, SPARC, COL6A2, MGP, CYR61, ANXA6, LGALS1, C1QA and C1QB) directly connected to fibronectin 1 (FN1). Most of these genes were lower expressed in severe COPD and showed the same effect in nasal brushings. Conclusions: We found a unique severe COPD bronchial gene signature with key roles for VEGFA and FN1, which was retained in the upper airways. This supports the hypothesis that severe COPD, at least partly, comprises a different pathology and supports the potential for biomarker development based on nasal brushes in COPD.

5.
iScience ; 26(10): 107813, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37810211

RESUMEN

Altered myeloid inflammation and lymphopenia are hallmarks of severe infections. We identified the upregulated EN-RAGE gene program in airway and blood myeloid cells from patients with acute lung injury from SARS-CoV-2 or other causes across 7 cohorts. This program was associated with greater clinical severity and predicted future mechanical ventilation and death. EN-RAGEhi myeloid cells express features consistent with suppressor cell functionality, including low HLA-DR and high PD-L1. Sustained EN-RAGE program expression in airway and blood myeloid cells correlated with clinical severity and increasing expression of T cell dysfunction markers. IL-6 upregulated many EN-RAGE program genes in monocytes in vitro. IL-6 signaling blockade by tocilizumab in a placebo-controlled clinical trial led to rapid normalization of EN-RAGE and T cell gene expression. This identifies IL-6 as a key driver of myeloid dysregulation associated with worse clinical outcomes in COVID-19 patients and provides insights into shared pathophysiological mechanisms in non-COVID-19 ARDS.

6.
J Allergy Clin Immunol ; 152(4): 876-886, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37315813

RESUMEN

BACKGROUND: Patients with type-2 (T2) cytokine-low severe asthma often have persistent symptoms despite suppression of T2 inflammation with corticosteroids. OBJECTIVES: We sought to analyze whole blood transcriptome from 738 samples in T2-biomarker-high/-low patients with severe asthma to relate transcriptomic signatures to T2 biomarkers and asthma symptom scores. METHODS: Bulk RNA-seq data were generated for blood samples (baseline, week 24, week 48) from 301 participants recruited to a randomized clinical trial of corticosteroid optimization in severe asthma. Unsupervised clustering, differential gene expression analysis, and pathway analysis were performed. Patients were grouped by T2-biomarker status and symptoms. Associations between clinical characteristics and differentially expressed genes (DEGs) associated with biomarker and symptom levels were investigated. RESULTS: Unsupervised clustering identified 2 clusters; cluster 2 patients were blood eosinophil-low/symptom-high and more likely to be receiving oral corticosteroids (OCSs). Differential gene expression analysis of these clusters, with and without stratification for OCSs, identified 2960 and 4162 DEGs, respectively. Six hundred twenty-seven of 2960 genes remained after adjusting for OCSs by subtracting OCS signature genes. Pathway analysis identified dolichyl-diphosphooligosaccharide biosynthesis and assembly of RNA polymerase I complex as significantly enriched pathways. No stable DEGs were associated with high symptoms in T2-biomarker-low patients, but numerous associated with elevated T2 biomarkers, including 15 that were upregulated at all time points irrespective of symptom level. CONCLUSIONS: OCSs have a considerable effect on whole blood transcriptome. Differential gene expression analysis demonstrates a clear T2-biomarker transcriptomic signature, but no signature was found in association with T2-biomarker-low patients, including those with a high symptom burden.


Asunto(s)
Asma , Transcriptoma , Humanos , Asma/tratamiento farmacológico , Asma/genética , Asma/diagnóstico , Perfilación de la Expresión Génica , Biomarcadores , Corticoesteroides/uso terapéutico
7.
Crit Care ; 27(1): 234, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37312169

RESUMEN

Angiopoietin-2 (Ang-2) is associated with vascular endothelial injury and permeability in the acute respiratory distress syndrome (ARDS) and sepsis. Elevated circulating Ang-2 levels may identify critically ill patients with distinct pathobiology amenable to targeted therapy. We hypothesized that plasma Ang-2 measured shortly after hospitalization among patients with sepsis would be associated with the development of ARDS and poor clinical outcomes. To test this hypothesis, we measured plasma Ang-2 in a cohort of 757 patients with sepsis, including 267 with ARDS, enrolled in the emergency department or early in their ICU course before the COVID-19 pandemic. Multivariable models were used to test the association of Ang-2 with the development of ARDS and 30-day morality. We found that early plasma Ang-2 in sepsis was associated with higher baseline severity of illness, the development of ARDS, and mortality risk. The association between Ang-2 and mortality was strongest among patients with ARDS and sepsis as compared to those with sepsis alone (OR 1.81 vs. 1.52 per log Ang-2 increase). These findings might inform models testing patient risk prediction and strengthen the evidence for Ang-2 as an appealing biomarker for patient selection for novel therapeutic agents to target vascular injury in sepsis and ARDS.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Sepsis , Humanos , Angiopoyetina 2 , Enfermedad Crítica , Pandemias , Pronóstico
8.
J Allergy Clin Immunol Pract ; 11(4): 1233-1242.e5, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36621603

RESUMEN

BACKGROUND: Approximately 5% to 10% of patients with asthma have severe disease, with a consistent preponderance in females. Current asthma guidelines recommend stepwise treatment to achieve symptom control with no differential treatment considerations for either sex. OBJECTIVE: To examine whether patient sex affects outcomes when using a composite T2-biomarker score to adjust corticosteroid (CS) treatment in patients with severe asthma compared with standard care. METHODS: This is a post hoc analysis, stratifying patient outcomes by sex, of a 48-week, multicenter, randomized controlled clinical trial comparing a biomarker-defined treatment algorithm with standard care. The primary outcome was the proportion of patients with a reduction in CS treatment (inhaled and oral corticosteroids). Secondary outcomes included exacerbation rates, hospital admissions, and lung function. RESULTS: Of the 301 patients randomized, 194 (64.5%) were females and 107 (35.5%) were males. The biomarker algorithm led to a greater proportion of females being on a lower CS dose versus standard care, which was not seen in males (effect estimate: females, 3.57; 95% CI, 1.14-11.18 vs males, 0.54; 95% CI, 0.16-1.80). In T2-biomarker-low females, reducing CS dose was not associated with increased exacerbations. Females scored higher in all domains of the 7-item Asthma Control Questionnaire, apart from FEV1, but with no difference when adjusted for body mass index/anxiety and/or depression. Dissociation between symptoms and T2 biomarkers were noted in both sexes, with a higher proportion of females being symptom high/T2-biomarker low (22.8% vs 15.6%; P = .0002), whereas males were symptom low/T2-biomarker high (22.3% vs 11.4%; P < .0001). CONCLUSIONS: This exploratory post hoc analysis identified that females achieved a greater benefit from biomarker-directed CS optimization versus symptom-directed treatment.


Asunto(s)
Antiasmáticos , Asma , Masculino , Femenino , Humanos , Corticoesteroides , Quimioterapia Combinada , Biomarcadores
9.
Eur Respir Rev ; 32(167)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36697211

RESUMEN

Interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP) are alarmins that are released upon airway epithelial injury from insults such as viruses and cigarette smoke, and play critical roles in the activation of immune cell populations such as mast cells, eosinophils and group 2 innate lymphoid cells. Both cytokines were previously understood to primarily drive type 2 (T2) inflammation, but there is emerging evidence for a role for these alarmins to additionally mediate non-T2 inflammation, with recent clinical trial data in asthma and COPD cohorts with non-T2 inflammation providing support. Currently available treatments for both COPD and asthma provide symptomatic relief with disease control, improving lung function and reducing exacerbation rates; however, there still remains an unmet need for further improving lung function and reducing exacerbations, particularly for those not responsive to currently available treatments. The epithelial cytokines/alarmins are involved in exacerbations; biologics targeting TSLP and IL-33 have been shown to reduce exacerbations in moderate-to-severe asthma, either in a broad population or in specific subgroups, respectively. For COPD, while there is clinical evidence for IL-33 blockade impacting exacerbations in COPD, clinical data from anti-TSLP therapies is awaited. Clinical data to date support an acceptable safety profile for patients with airway diseases for both anti-IL-33 and anti-TSLP antibodies in development. We examine the roles of IL-33 and TSLP, their potential use as drug targets, and the evidence for target patient populations for COPD and asthma, together with ongoing and future trials focused on these targets.


Asunto(s)
Asma , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Linfopoyetina del Estroma Tímico , Inmunidad Innata , Interleucina-33/uso terapéutico , Alarminas/uso terapéutico , Linfocitos/metabolismo , Citocinas/metabolismo , Citocinas/uso terapéutico , Inflamación , Pulmón , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico
10.
J Allergy Clin Immunol ; 151(5): 1351-1356, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36343773

RESUMEN

BACKGROUND: Chronic spontaneous urticaria (CSU) is a dermatologic condition characterized by spontaneous, pruritic hives and/or angioedema that persists for 6 weeks or longer with no identifiable trigger. Antihistamines and second-line therapies such as omalizumab are effective for some CSU patients, but others remain symptomatic, with significant impact on quality of life. This variable response to treatment and autoantibody levels across patients highlight clinically heterogeneous subgroups. OBJECTIVE: We aimed to highlight pathways involved in CSU by investigating the genetics of CSU risk and subgroups. METHODS: We performed a genome-wide association study (GWAS) of 679 CSU patients and 4446 controls and a GWAS of chronic urticaria (CU)-index, which measures IgG autoantibodies levels, by comparing 447 CU index-low to 183 CU index-high patients. We also tested whether polygenic scores for autoimmune-related disorders were associated with CSU risk and CU index. RESULTS: We identified 2 loci significantly associated with disease risk. The strongest association mapped to position 56 of HLA-DQA1 (P = 1.69 × 10-9), where the arginine residue was associated with increased risk (odds ratio = 1.64). The second association signal colocalized with expression-quantitative trait loci for ITPKB in whole blood (Pcolocalization = .997). The arginine residue at position 56 of HLA-DQA1 was also associated with increased risk of CU index-high (P = 6.15 × 10-5, odds ratio = 1.86), while the ITKPB association was not (P = .64). Polygenic scores for 3 autoimmune-related disorders (hypothyroidism, type 1 diabetes, and vitiligo) were associated with CSU risk and CU index (P < 2.34 × 10-3, odds ratio > 1.72). CONCLUSION: A GWAS of CSU identified 2 genome-wide significant loci, highlighting the shared genetics between CU index and autoimmune disorders.


Asunto(s)
Urticaria Crónica , Urticaria , Humanos , Estudio de Asociación del Genoma Completo , Calidad de Vida , Enfermedad Crónica , Urticaria Crónica/genética , Urticaria/genética , Urticaria/inducido químicamente , Omalizumab/efectos adversos
11.
J Allergy Clin Immunol ; 150(6): 1517-1524, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36041655

RESUMEN

BACKGROUND: The binding of IL-33 to its receptor ST2 (alias of IL1RL1) leads to the release of inflammatory mediators and may play a role in the pathogenesis of atopic dermatitis. Astegolimab is a fully human, IgG2 mAb that binds to ST2 and inhibits IL-33 signaling. OBJECTIVES: This study sought to assess the efficacy, safety, and pharmacokinetics of astegolimab in patients with atopic dermatitis. METHODS: This was a randomized, placebo-controlled, phase 2 study in which adults with chronic atopic dermatitis were randomized 1:1 to receive astegolimab 490 mg every 4 weeks or placebo, for 16 weeks. The primary outcome was the percentage of change from baseline to week 16 of the Eczema Area and Severity Index score. RESULTS: A total of 65 patients were enrolled in the study (placebo, n = 32; astegolimab, n = 33). The adjusted mean percentage of change from baseline to week 16 in the Eczema Area and Severity Index score was -51.47% for astegolimab compared with -58.24% for placebo, with a nonsignificant treatment difference of 6.77% (95% CI: -16.57-30.11; P = .5624). No differences were observed between treatment groups for secondary efficacy outcomes and in exploratory biomarkers (blood eosinophils, serum IL-5, serum CCL13). With the use of loading dose, pharmacokinetic exposure was sufficient from week 1. Astegolimab was well-tolerated, with a safety profile consistent with that observed in previous clinical trials. CONCLUSIONS: In patients with atopic dermatitis, astegolimab did not show a significant difference compared to placebo for the primary or secondary outcomes.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Dermatitis Atópica , Humanos , Dermatitis Atópica/tratamiento farmacológico , Interleucina-33 , Anticuerpos Monoclonales Humanizados/uso terapéutico
12.
CPT Pharmacometrics Syst Pharmacol ; 11(9): 1268-1277, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35857704

RESUMEN

Asthma is a complex, heterogeneous disease with a high unmet medical need, despite therapies targeting a multitude of pathways. The ability to quantitatively integrate preclinical and clinical data on these pathways could aid in the development and testing of novel targets and therapeutics. In this work, we develop a computational model of asthma biology, including key cell types and mediators, and create a virtual population capturing clinical heterogeneity. The simulated responses to therapies targeting IL-13, IL-4Rα, IL-5, IgE, and TSLP demonstrate agreement with clinical endpoints and biomarkers of type 2 (T2) inflammation, including blood eosinophils, FEV1, IgE, and FeNO. We use the model to explore the potential benefit of targeting the IL-33 pathway with anti-IL-33 and anti-ST2. Model predictions are compared with data on blood eosinophils, FeNO, and FEV1 from recent anti-IL-33 and anti-ST2 trials and used to interpret trial results based on pathway biology and pharmacology. Results of sensitivity analyses on the contributions of IL-33 to the predicted biomarker changes suggest that anti-ST2 therapy reduces circulating blood eosinophil levels primarily through its impact on eosinophil progenitor maturation and IL-5-dependent survival, and induces changes in FeNO and FEV1 through its effect on immune cells involved in T2 cytokine production. Finally, we also investigate the impact of ST2 genetics on the conferred benefit of anti-ST2. The model includes representation of a wide array of biologic mechanisms and interventions that will provide mechanistic insight and support clinical program design for a wide range of novel therapies during drug development.


Asunto(s)
Asma , Interleucina-5 , Eosinófilos , Humanos , Inmunoglobulina E , Proteína 1 Similar al Receptor de Interleucina-1
13.
Pulm Pharmacol Ther ; 75: 102133, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35644305

RESUMEN

BACKGROUND: Janus Kinases (JAKs) mediate activity of many asthma-relevant cytokines. GDC-0214, an inhaled small molecule JAK1 inhibitor, has previously been shown to reduce fractional exhaled nitric oxide (FeNO) in patients with mild asthma, but required an excessive number of inhalations. AIM: To assess whether GDC-4379, a new inhaled JAK inhibitor, reduces FeNO and peripheral biomarkers of inflammation. METHODS: This study assessed the activity of GDC-4379 in a double-blind, randomized, placebo-controlled, Phase 1 study in patients with mild asthma. Participants included adults (18-65y) with a diagnosis of asthma for ≥6 months, forced expiratory volume in 1 s (FEV1)> 70% predicted, FeNO >40 ppb, using as-needed short-acting beta-agonist medication only. Four sequential, 14-day, ascending-dose cohorts (10 mg QD, 30 mg QD, 40 mg BID, and 80 mg QD) of 12 participants each were randomized 2:1 to GDC-4379 or placebo. The primary activity outcome was percent change from baseline (CFB) in FeNO to Day 14 compared to the pooled placebo group. Safety, tolerability, pharmacokinetics, and pharmacodynamic biomarkers, including blood eosinophils, serum CCL17, and serum CCL18, were also assessed. RESULTS: Of 48 enrolled participants, the mean age was 25 years and 54% were female. Median (range) FeNO at baseline was 79 (41-222) ppb. GDC-4379 treatment led to dose-dependent reductions in FeNO. Compared to placebo, mean (95% CI) percent CFB in FeNO to Day 14 was: -6 (-43, 32) at 10 mg QD, -26 (-53, 2) at 30 mg QD, -55 (-78, -32) at 40 mg BID and -52 (-72, -32) at 80 mg QD. Dose-dependent reductions in blood eosinophils and serum CCL17 were also observed. Higher plasma drug concentrations corresponded with greater FeNO reductions. No serious AEs occurred. The majority of AEs were mild to moderate. The most common AEs were headache and oropharyngeal pain. Minor changes in neutrophils were noted at 80 mg QD, but were not considered clinically meaningful. CONCLUSIONS: In patients with mild asthma, 14-day treatment with GDC-4379 reduced FeNO levels and peripheral biomarkers of inflammation. Treatment was well tolerated without any major safety concerns. AUSTRALIAN NEW ZEALAND CLINICAL TRIALS REGISTRY: ACTRN12619000227190.


Asunto(s)
Asma , Inhibidores de las Cinasas Janus , Adulto , Asma/tratamiento farmacológico , Australia , Biomarcadores , Pruebas Respiratorias , Femenino , Humanos , Inflamación/tratamiento farmacológico , Inhibidores de las Cinasas Janus/efectos adversos , Masculino , Óxido Nítrico
14.
Am J Respir Crit Care Med ; 206(5): 545-553, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35549845

RESUMEN

Rationale: The past 25 years have seen huge progress in understanding of the pathobiology of type-2 (T2) asthma, identification of measurable biomarkers, and the emergence of novel monoclonal antibody treatments. Although present in a minority of patients with severe asthma, very little is known about the mechanisms underlying T2-low asthma, making it a significant unmet need in asthma research. Objectives: The objective of this study was to explore the differences between study exacerbators and nonexacerbators, to describe physiological changes at exacerbation in those who are T2HIGH and T2LOW at the time of exacerbation, and to evaluate the stability of inflammatory phenotypes when stable and at exacerbation. Methods: Exacerbation assessment was a prespecified secondary analysis of data from a 48-week, multicenter, randomized controlled clinical study comparing the use of biomarkers and symptoms to adjust steroid treatment in a T2-low severe asthma-enriched cohort. Participants were phenotyped as T2LOW (fractional exhaled nitric oxide ⩽ 20 ppb and blood eosinophil count ⩽ 150 cells/µl) or T2HIGH (fractional exhaled nitric oxide > 20 or blood eosinophil count > 150) at study enrollment and at each exacerbation. Here, we report the findings of the exacerbation analyses, including comparison of exacerbators and nonexacerbators, the physiological changes at exacerbation in those who had evidence of T2 biology at exacerbation versus those that did not, and the stability of inflammatory phenotypes when stable and at exacerbation. Measurements and Main Results: Of the 301 participants, 60.8% (183) had one or more self-reported exacerbations (total of 390). Exacerbators were more likely to be female, have a higher body mass index, and have more exacerbations requiring oral corticosteroid and unscheduled primary care attendances for exacerbations. At enrollment, 23.6% (71) were T2LOW and 76.4% (230) T2HIGH. The T2LOW group had more asthma primary care attendances, were more likely to have a previous admission to HDU (high dependency unit)/ICU and to be receiving maintenance oral corticosteroids. At exacerbation, the T2LOW events were indistinguishable from T2HIGH exacerbations in terms of lung function (mean fall in T2LOW FEV1, 200 [400] ml vs. T2HIGH 200 [300] ml; P = 0.93) and symptom increase (ACQ5: T2LOW, 1.4 [0.8] vs. T2HIGH, 1.3 [0.8]; P = 0.72), with no increase in T2 biomarkers from stable to exacerbation state in the T2LOW exacerbations. The inflammatory phenotype within individual patients was dynamic; inflammatory phenotype at study entry did not have a significant association with exacerbation phenotype. Conclusions: Asthma exacerbations demonstrating a T2LOW phenotype were physiologically and symptomatically similar to T2HIGH exacerbations. T2LOW asthma was an unstable phenotype, suggesting that exacerbation phenotyping should occur at the time of exacerbation. The clinically significant exacerbations in participants without evidence of T2 biology at the time of exacerbation highlight the unmet and pressing need to further understand the mechanisms at play in non-T2 asthma. Clinical trial registered with www.clinicaltrials.gov (NCT02717689).


Asunto(s)
Antiasmáticos , Asma , Corticoesteroides/uso terapéutico , Antiasmáticos/uso terapéutico , Biomarcadores , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Fenotipo , Factores de Riesgo
15.
Allergy ; 77(10): 2974-2986, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35579040

RESUMEN

BACKGROUND: The most recognizable phenotype of severe asthma comprises people who are blood eosinophil and FeNO-high, driven by type 2 (T2) cytokine biology, which responds to targeted biological therapies. However, in many people with severe asthma, these T2 biomarkers are suppressed but poorly controlled asthma persists. The mechanisms driving asthma in the absence of T2 biology are poorly understood. OBJECTIVES: To explore airway pathology in T2 biomarker-high and -low severe asthma. METHODS: T2 biomarker-high severe asthma (T2-high, n = 17) was compared with biomarker-intermediate (T2-intermediate, n = 21) and biomarker-low (T2-low, n = 20) severe asthma and healthy controls (n = 28). Bronchoscopy samples were processed for immunohistochemistry, and sputum for cytokines, PGD2 and LTE4 measurements. RESULTS: Tissue eosinophil, neutrophil and mast cell counts were similar across severe asthma phenotypes and not increased when compared to healthy controls. In contrast, the remodelling features of airway smooth muscle mass and MUC5AC expression were increased in all asthma groups compared with health, but similar across asthma subgroups. Submucosal glands were increased in T2-intermediate and T2-low asthma. In spite of similar tissue cellular inflammation, sputum IL-4, IL-5 and CCL26 were increased in T2-high versus T2-low asthma, and several further T2-associated cytokines, PGD2 and LTE4 , were increased in T2-high and T2-intermediate asthma compared with healthy controls. CONCLUSIONS: Eosinophilic tissue inflammation within proximal airways is suppressed in T2 biomarker-high and T2-low severe asthma, but inflammatory and structural cell activation is present, with sputum T2-associated cytokines highest in T2 biomarker-high patients. Airway remodelling persists and may be important for residual disease expression beyond eosinophilic exacerbations. Registered at ClincialTrials.gov: NCT02883530.


Asunto(s)
Asma , Eosinofilia , Remodelación de las Vías Aéreas (Respiratorias) , Asma/metabolismo , Biomarcadores , Citocinas/análisis , Eosinofilia/patología , Eosinófilos/metabolismo , Humanos , Inflamación/patología , Interleucina-4 , Interleucina-5/análisis , Esputo
16.
Sci Transl Med ; 14(641): eabl8146, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35442706

RESUMEN

Asthma and inflammatory airway diseases restrict airflow in the lung, compromising gas exchange and lung function. Inhaled corticosteroids (ICSs) can reduce inflammation, control symptoms, and improve lung function; however, a growing number of patients with severe asthma do not benefit from ICS. Using bronchial airway epithelial brushings from patients with severe asthma or primary human cells, we delineated a corticosteroid-driven fibroblast growth factor (FGF)-dependent inflammatory axis, with FGF-responsive fibroblasts promoting downstream granulocyte colony-stimulating factor (G-CSF) production, hyaluronan secretion, and neutrophilic inflammation. Allergen challenge studies in mice demonstrate that the ICS, fluticasone propionate, inhibited type 2-driven eosinophilia but induced a concomitant increase in FGFs, G-CSF, hyaluronan, and neutrophil infiltration. We developed a model of steroid-induced neutrophilic inflammation mediated, in part, by induction of an FGF-dependent epithelial-mesenchymal axis, which may explain why some individuals do not benefit from ICS. In further proof-of-concept experiments, we found that combination therapy with pan-FGF receptor inhibitors and corticosteroids prevented both eosinophilic and steroid-induced neutrophilic inflammation. Together, these results establish FGFs as therapeutic targets for severe asthma patients who do not benefit from ICS.


Asunto(s)
Asma , Factores de Crecimiento de Fibroblastos , Corticoesteroides/farmacología , Corticoesteroides/uso terapéutico , Animales , Fluticasona/farmacología , Fluticasona/uso terapéutico , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Humanos , Ácido Hialurónico , Inflamación/tratamiento farmacológico , Ratones
17.
J Allergy Clin Immunol ; 150(4): 972-978.e7, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35487308

RESUMEN

BACKGROUND: Clinical studies of type 2 (T2) cytokine-related neutralizing antibodies in asthma have identified a substantial subset of patients with low levels of T2 inflammation who do not benefit from T2 cytokine neutralizing antibody treatment. Non-T2 mechanisms are poorly understood in asthma but represent a redefined unmet medical need. OBJECTIVE: We sought to gain a better understanding of genetic contributions to T2-low asthma. METHODS: We utilized an unbiased genome-wide association study of patients with moderate to severe asthma stratified by T2 serum biomarker periostin. We also performed additional expression and biological analysis for the top genetic hits. RESULTS: We identified a novel protective single nucleotide polymorphism at chr19q13.41, which is selectively associated with T2-low asthma and establishes Kallikrein-related peptidase 5 (KLK5) as the causal gene mediating this association. Heterozygous carriers of the single nucleotide polymorphisms have reduced KLK5 expression. KLK5 is secreted by human bronchial epithelial cells and elevated in asthma bronchial alveolar lavage. T2 cytokines IL-4 and IL-13 downregulate KLK5 in human bronchial epithelial cells. KLK5, dependent on its catalytic function, induces epithelial chemokine/cytokine expression. Finally, overexpression of KLK5 in airway or lack of an endogenous KLK5 inhibitor, SPINK5, leads to spontaneous airway neutrophilic inflammation. CONCLUSION: Our data identify KLK5 to be the causal gene at a novel locus at chr19q13.41 associated with T2-low asthma.


Asunto(s)
Asma , Estudio de Asociación del Genoma Completo , Anticuerpos Neutralizantes/genética , Asma/genética , Quimiocinas/genética , Citocinas/metabolismo , Humanos , Inflamación/genética , Interleucina-13/genética , Interleucina-4/genética , Calicreínas/genética , Calicreínas/metabolismo
18.
Sci Rep ; 12(1): 5574, 2022 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-35368043

RESUMEN

Genome-wide association studies (GWAS) have identified many common variant loci associated with asthma susceptibility, but few studies investigate the genetics underlying moderate-to-severe asthma risk. Here, we present a whole-genome sequencing study comparing 3181 moderate-to-severe asthma patients to 3590 non-asthma controls. We demonstrate that asthma risk is genetically correlated with lung function measures and that this component of asthma risk is orthogonal to the eosinophil genetics that also contribute to disease susceptibility. We find that polygenic scores for reduced lung function are associated with younger asthma age of onset. Genome-wide, seven previously reported common asthma variant loci and one previously reported lung function locus, near THSD4, reach significance. We replicate association of the lung function locus in a recently published GWAS of moderate-to-severe asthma patients. We additionally replicate the association of a previously reported rare (minor allele frequency < 1%) coding variant in IL33 and show significant enrichment of rare variant burden in genes from common variant allergic disease loci. Our findings highlight the contribution of lung function genetics to moderate-to-severe asthma risk, and provide initial rare variant support for associations with moderate-to-severe asthma risk at several candidate genes from common variant loci.


Asunto(s)
Asma , Estudio de Asociación del Genoma Completo , Asma/genética , Predisposición Genética a la Enfermedad , Humanos , Pulmón , Secuenciación Completa del Genoma
19.
Lancet Respir Med ; 10(5): 469-477, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35339234

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a heterogeneous inflammatory airway disease. The epithelial-derived IL-33 and its receptor ST2 have been implicated in airway inflammation and infection. We aimed to determine whether astegolimab, a selective ST2 IgG2 monoclonal antibody, reduces exacerbations in COPD. METHODS: COPD-ST2OP was a single-centre, randomised, double-blinded, placebo-controlled phase 2a trial in moderate-to-very severe COPD. Participants were randomly assigned (1:1) with a web-based system to received 490 mg subcutaneous astegolimab or subcutaneous placebo, every 4 weeks for 44 weeks. The primary endpoint was exacerbation rate assessed for 48 weeks assessed with a negative binomial count model in the intention-to-treat population, with prespecified subgroup analysis by baseline blood eosinophil count. The model was the number of exacerbations over the 48-week treatment period, with treatment group as a covariate. Safety was assessed in the whole study population until week 60. Secondary endpoints included Saint George's Respiratory Questionnaire for COPD (SGRQ-C), FEV1, and blood and sputum cell counts. The trial was registered with ClinicalTrials.gov, NCT03615040. FINDINGS: The exacerbation rate at 48 weeks in the intention-to-treat analysis was not significantly different between the astegolimab group (2·18 [95% CI 1·59 to 2·78]) and the placebo group (2·81 [2·05 to 3·58]; rate ratio 0·78 [95% CI 0·53 to 1·14]; p=0·19]). In the prespecified analysis stratifying patients by blood eosinophil count, patients with 170 or fewer cells per µL had 0·69 exacerbations (0·39 to 1·21), whereas those with more than 170 cells per µL had 0·83 exacerbations (0·49 to 1·40). For the secondary outcomes, the mean difference between the SGRQ-C in the astegolimab group versus placebo group was -3·3 (95% CI -6·4 to -0·2; p=0·039), and mean difference in FEV1 between the two groups was 40 mL (-10 to 90; p=0·094). The difference in geometric mean ratios between the two groups for blood eosinophil counts was 0·59 (95% CI 0·51 to 0·69; p<0·001) and 0·25 (0·19 to 0·33; p<0·001) for sputum eosinophil counts. Incidence of treatment-emergent adverse events was similar between groups. INTERPRETATION: In patients with moderate-to-very severe COPD, astegolimab did not significantly reduce exacerbation rate, but did improve health status compared with placebo. FUNDING: Funded by Genentech and National Institute for Health Research Biomedical Research Centres.


Asunto(s)
Proteína 1 Similar al Receptor de Interleucina-1 , Enfermedad Pulmonar Obstructiva Crónica , Anticuerpos Monoclonales Humanizados/uso terapéutico , Progresión de la Enfermedad , Método Doble Ciego , Eosinófilos , Humanos , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico
20.
Sci Transl Med ; 14(627): eabf8188, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35020406

RESUMEN

Exacerbations of symptoms represent an unmet need for people with asthma. Bacterial dysbiosis and opportunistic bacterial infections have been observed in, and may contribute to, more severe asthma. However, the molecular mechanisms driving these exacerbations remain unclear. We show here that bacterial lipopolysaccharide (LPS) induces oncostatin M (OSM) and that airway biopsies from patients with severe asthma present with an OSM-driven transcriptional profile. This profile correlates with activation of inflammatory and mucus-producing pathways. Using primary human lung tissue or human epithelial and mesenchymal cells, we demonstrate that OSM is necessary and sufficient to drive pathophysiological features observed in severe asthma after exposure to LPS or Klebsiella pneumoniae. These findings were further supported through blockade of OSM with an OSM-specific antibody. Single-cell RNA sequencing from human lung biopsies identified macrophages as a source of OSM. Additional studies using Osm-deficient murine macrophages demonstrated that macrophage-derived OSM translates LPS signals into asthma-associated pathologies. Together, these data provide rationale for inhibiting OSM to prevent bacterial-associated progression and exacerbation of severe asthma.


Asunto(s)
Asma , Oncostatina M/metabolismo , Animales , Asma/patología , Humanos , Pulmón/patología , Macrófagos/metabolismo , Ratones , Moco , Oncostatina M/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...