Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Process Impacts ; 25(10): 1718-1731, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37781874

RESUMEN

Microplastic particles are of increasing environmental concern due to the widespread uncontrolled degradation of various commercial products made of plastic and their associated waste disposal. Recently, common technology used to repair sewer pipes was reported as one of the emission sources of airborne microplastics in urban areas. This research presents results of the multi-modal comprehensive chemical characterization of the microplastic particles related to waste discharged in the pipe repair process and compares particle composition with the components of uncured resin and cured plastic composite used in the process. Analysis of these materials employs complementary use of surface-enhanced Raman spectroscopy, scanning transmission X-ray spectro-microscopy, single particle mass spectrometry, and direct analysis in real-time high-resolution mass spectrometry. It is shown that the composition of the relatively large (100 µm) microplastic particles resembles components of plastic material used in the process. In contrast, the composition of the smaller (micrometer and sub-micrometer) particles is significantly different, suggesting their formation from unintended polymerization of water-soluble components occurring in drying droplets of the air-discharged waste. In addition, resin material type influences the composition of released microplastic particles. Results are further discussed to guide the detection and advanced characterization of airborne microplastics in future field and laboratory studies pertaining to sewer pipe repair technology.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos/análisis , Agua/análisis , Espectrometría de Masas , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos
2.
ACS Appl Mater Interfaces ; 15(27): 32863-32874, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37378615

RESUMEN

Herein are presented several adhesive formulations made from zein protein and tannic acid that can bind to a wide range of surfaces underwater. Higher performance comes from more tannic acid than zein, whereas dry bonding required the opposite case of more zein than tannic acid. Each adhesive works best in the environment that it was designed and optimized for. We show underwater adhesion experiments done on different substrates and in different waters (sea water, saline solution, tap water, deionized water). Surprisingly, the water type does not influence the performance to a great deal but the substrate type does. An additional unexpected result was bond strength increasing over time when exposed to water, contradicting general experiments of working with glues. Initial adhesion underwater was stronger compared to benchtop adhesion, suggesting that water helps to make the glue stick. Temperature effects were determined, indicating maximum bonding at about 30 °C and then another increase at higher temperatures. Once the adhesive was placed underwater, a protective skin formed on the surface, keeping water from entering the rest of the material immediately. The shape of the adhesive could be manipulated easily and, once in place, the skin could be broken to induce faster bond formation. Data indicated that underwater adhesion was predominantly induced by tannic acid, cross-linking within the bulk for adhesion and to the substrate surfaces. The zein protein provided a less polar matrix that helped to keep the tannic acid molecules in place. These studies provide new plant-based adhesives for working underwater and for creating a more sustainable environment.


Asunto(s)
Adhesivos , Zeína , Adhesivos/química , Zeína/química , Proteínas , Agua/química
3.
Inorg Chem ; 61(37): 14871-14879, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36082487

RESUMEN

Reported herein is a new series of diruthenium(III,III) bisalkynyl and bisaryl diruthenium(III,III) compounds supported with 2-amino-3-(trifluoromethyl)pyridinate (amtfmp). Using Ru2(amtfmp)4Cl2 from a modified preparation, cis 2:2 Ru2(amtfmp)4(C≡CPh)2 (1), cis 2:2 Ru2(amtfmp)4(Ph)2 (2), and 3:1 Ru2(amtfmp)4(Ph)2 (3) were synthesized via a lithium-halogen exchange reaction using LiC2Ph and LiPh, respectively. Compounds 1-3 are all Ru2(III,III) species with a ground-state configuration of π4δ2(π*)4 (S = 0) and were characterized via mass spectrometry, electron absorption and 1H/19F NMR spectroscopies, and voltammetry. The molecular structures of 1-3 were established using single-crystal X-ray diffraction analysis, and preliminary density functional theory analysis was performed to elaborate the electronic structures of 1 and 2. Comparisons of the electrochemical properties of 1-3 against the Ru2(amtfmp)4Cl2 starting material reveal cathodic shifts of the Ru27+/6+ oxidation and the Ru26+/5+ and Ru25+/4+ reduction potentials. In comparison to related Ru2(III,III) bisalkynyl and bisaryl compounds, the electrode potentials for 1-3 are anodically shifted up to ca. 0.95 V, highlighting the strong electron-withdrawing nature of the amtfmp ligand.

4.
Dalton Trans ; 51(2): 580-586, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34904616

RESUMEN

Reported herein are the two new series of diruthenium aryl compounds: Ru2(DiMeOap)4(Ar) (1a-6a) (DiMeOap = 2-(3,5-dimethoxyanilino)pyridinate) and Ru2(m-iPrOap)4(Ar) (1b-5b) (m-iPrOap = 2-(3-iso-propoxyanilino)pyridinate), prepared through the lithium-halogen exchange reaction with a variety of aryl halides (Ar = C6H4-4-NMe2 (1), C6H4-4-tBu (2), C6H4-4-OMe (3), C6H3-3,5-(OMe)2 (4), C6H4-4-CF3 (5), C6H5 (6)). The molecular structures of these compounds were established with X-ray diffraction studies. Additionally, these compounds were characterized using electronic absorption and voltammetric techniques. Compounds 1a-6a and 1b-5b are all in the Ru25+ oxidation state, with a ground state configuration of σ2π4δ2(π*δ*)3 (S = 3/2). Use of the modified ap ligands (ap') resulted in moderate increases of product yield when compared to the unsubstituted Ru2(ap)4(Ar) (ap = 2-anilinopyridinate) series. Comparisons of the electrochemical properties of 1a-6a and 1b-5b against the Ru2(ap')Cl starting material reveals the addition of the aryl ligand cathodically shifted the Ru26+/5+ oxidation and Ru25+/4+ reduction potentials. These oxidation and reductions potentials are also strongly dependent on the p-substituent of the axial aryl ligands.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...