Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Structure ; 31(7): 747-754, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37419096

RESUMEN

This meeting report presents the 2022 Annual Meeting of the cluster for Integrative Structural Biology at the University of Copenhagen (ISBUC) and discusses the cluster approach to interdisciplinary research management. This approach successfully facilitates cross-faculty and inter-departmental collaboration. Innovative integrative research collaborations ignited by ISBUC, as well as research presented at the meeting, are showcased.


Asunto(s)
Biología , Investigación Interdisciplinaria
3.
J Exp Bot ; 67(9): 2715-2730, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26962211

RESUMEN

Aliphatic compounds on plant surfaces, called epicuticular waxes, are the first line of defense against pathogens and pests, contribute to reducing water loss and determine other important phenotypes. Aliphatics can form crystals affecting light refraction, resulting in a color change and allowing identification of mutants in their synthesis or transport. The present study discloses three such Eceriferum (cer) genes in barley - Cer-c, Cer-q and Cer-u - known to be tightly linked and functioning in a biochemical pathway forming dominating amounts of ß-diketone and hydroxy-ß-diketones plus some esterified alkan-2-ols. These aliphatics are present in many Triticeae as well as dicotyledons such as Eucalyptus and Dianthus. Recently developed genomic resources and mapping populations in barley defined these genes to a small region on chromosome arm 2HS. Exploiting Cer-c and -u potential functions pinpointed five candidates, of which three were missing in apparent cer-cqu triple mutants. Sequencing more than 50 independent mutants for each gene confirmed their identification. Cer-c is a chalcone synthase-like polyketide synthase, designated diketone synthase (DKS), Cer-q is a lipase/carboxyl transferase and Cer-u is a P450 enzyme. All were highly expressed in pertinent leaf sheath tissue of wild type. A physical map revealed the order Cer-c, Cer-u, Cer-q with the flanking genes 101kb apart, confirming they are a gene cluster, Cer-cqu. Homology-based modeling suggests that many of the mutant alleles affect overall protein structure or specific active site residues. The rich diversity of identified mutations will facilitate future studies of three key enzymes involved in synthesis of plant apoplast waxes.

4.
J Biol Chem ; 289(4): 2344-52, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24302737

RESUMEN

Accumulating evidence suggest that the pyridine nucleotide NAD has far wider biological functions than its classical role in energy metabolism. NAD is used by hundreds of enzymes that catalyze substrate oxidation and, as such, it plays a key role in various biological processes such as aging, cell death, and oxidative stress. It has been suggested that changes in the ratio of free cytosolic [NAD(+)]/[NADH] reflects metabolic alterations leading to, or correlating with, pathological states. We have designed an isotopically labeled metabolic bioprobe of free cytosolic [NAD(+)]/[NADH] by combining a magnetic enhancement technique (hyperpolarization) with cellular glycolytic activity. The bioprobe reports free cytosolic [NAD(+)]/[NADH] ratios based on dynamically measured in-cell [pyruvate]/[lactate] ratios. We demonstrate its utility in breast and prostate cancer cells. The free cytosolic [NAD(+)]/[NADH] ratio determined in prostate cancer cells was 4 times higher than in breast cancer cells. This higher ratio reflects a distinct metabolic phenotype of prostate cancer cells consistent with previously reported alterations in the energy metabolism of these cells. As a reporter on free cytosolic [NAD(+)]/[NADH] ratio, the bioprobe will enable better understanding of the origin of diverse pathological states of the cell as well as monitor cellular consequences of diseases and/or treatments.


Asunto(s)
Neoplasias de la Mama/metabolismo , Glucosa/metabolismo , Glucólisis , NAD/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Ácido Láctico/metabolismo , Masculino , Neoplasias de la Próstata/patología , Ácido Pirúvico/metabolismo
5.
Anal Biochem ; 449: 45-51, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24333247

RESUMEN

A new chromogenic substrate to assay the starch debranching enzymes limit dextrinase and pullulanase is described. The 2-chloro-4-nitrophenyl glycoside of a commercially available branched heptasaccharide (Glc-maltotriosyl-maltotriose) was found to be a suitable specific substrate for starch debranching enzymes and allows convenient assays of enzymatic activities in a format suited for high-throughput analysis. The kinetic parameters of these enzymes toward the synthesized substrate are determined, and the selectivity of the substrate in a complex cereal-based extract is established.


Asunto(s)
Pruebas de Enzimas/métodos , Glicósido Hidrolasas/metabolismo , Hordeum/enzimología , Glicósidos/metabolismo , Hordeum/metabolismo , Cinética , Nitrofenoles/metabolismo , Almidón/metabolismo , Especificidad por Sustrato
6.
Protein Sci ; 16(2): 261-72, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17242430

RESUMEN

Two distinct ways of organizing fatty acid biosynthesis exist: the multifunctional type I fatty acid synthase (FAS) of mammals, fungi, and lower eukaryotes with activities residing on one or two polypeptides; and the dissociated type II FAS of prokaryotes, plastids, and mitochondria with individual activities encoded by discrete genes. The beta-ketoacyl [ACP] synthase (KAS) moiety of the mitochondrial FAS (mtKAS) is targeted by the antibiotic cerulenin and possibly by the other antibiotics inhibiting prokaryotic KASes: thiolactomycin, platensimycin, and the alpha-methylene butyrolactone, C75. The high degree of structural similarity between mitochondrial and prokaryotic KASes complicates development of novel antibiotics targeting prokaryotic KAS without affecting KAS domains of cytoplasmic FAS. KASes catalyze the C(2) fatty acid elongation reaction using either a Cys-His-His or Cys-His-Asn catalytic triad. Three KASes with different substrate specificities participate in synthesis of the C(16) and C(18) products of prokaryotic FAS. By comparison, mtKAS carries out all elongation reactions in the mitochondria. We present the X-ray crystal structures of the Cys-His-His-containing human mtKAS and its hexanoyl complex plus the hexanoyl complex of the plant mtKAS from Arabidopsis thaliana. The structures explain (1) the bimodal (C(6) and C(10)-C(12)) substrate preferences leading to the C(8) lipoic acid precursor and long chains for the membranes, respectively, and (2) the low cerulenin sensitivity of the human enzyme; and (3) reveal two different potential acyl-binding-pocket extensions. Rearrangements taking place in the active site, including subtle changes in the water network, indicate a change in cooperativity of the active-site histidines upon primer binding.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/química , Ácido Graso Sintasas/química , Proteínas Mitocondriales/química , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cerulenina/química , Cerulenina/metabolismo , Cristalografía por Rayos X , Ácido Graso Sintasas/metabolismo , Humanos , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...