Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Neurobiol ; 60(6): 3423-3438, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36859689

RESUMEN

Our understanding of the biological functions of the tau protein now includes its role as a scaffolding protein involved in signaling regulation, which also has implications for tau-mediated dysfunction and degeneration in Alzheimer's disease and other tauopathies. Recently, we found that pseudophosphorylation at sites linked to the pathology-associated AT8 phosphoepitope of tau disrupts normal fast axonal transport through a protein phosphatase 1 (PP1)-dependent pathway in squid axoplasm. Activation of the pathway and the resulting transport deficits required tau's N-terminal phosphatase-activating domain (PAD) and PP1 but the connection between tau and PP1 was not well defined. Here, we studied functional interactions between tau and PP1 isoforms and their effects on axonal transport in mammalian neurons. First, we found that wild-type tau interacted with PP1α and PP1γ primarily through its microtubule-binding repeat domain. Pseudophosphorylation of tau at S199/S202/T205 (psTau) increased PAD exposure, enhanced interactions with PP1γ, and increased active PP1γ levels in mammalian cells. Expression of psTau also significantly impaired axonal transport in primary rat hippocampal neurons. Deletion of PAD in psTau significantly reduced the interaction with PP1γ, eliminated increases of active PP1γ levels, and rescued axonal transport impairment in neurons. These data suggest that a functional consequence of phosphorylation within S199-T205 in tau, which occurs in AD and several other tauopathies, may be aberrant interaction with and activation of PP1γ and subsequent axonal transport disruption in a PAD-dependent fashion.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Ratas , Animales , Proteínas tau/metabolismo , Transporte Axonal/fisiología , Enfermedad de Alzheimer/metabolismo , Tauopatías/metabolismo , Neuronas/metabolismo , Fosforilación , Hipocampo/metabolismo , Mamíferos/metabolismo
2.
J Neurosci ; 41(45): 9431-9451, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34607969

RESUMEN

Pathologic tau modifications are characteristic of Alzheimer's disease and related dementias, but mechanisms of tau toxicity continue to be debated. Inherited mutations in tau cause early onset frontotemporal lobar dementias (FTLD-tau) and are commonly used to model mechanisms of tau toxicity in tauopathies. Previous work in the isolated squid axoplasm model demonstrated that several pathogenic forms of tau inhibit axonal transport through a mechanism involving activation of protein phosphatase 1 (PP1). Here, we determined that P301L and R5L FTLD mutant tau proteins elicit a toxic effect on axonal transport as monomeric proteins. We evaluated interactions of wild-type or mutant tau with specific PP1 isoforms (α, ß, and γ) to examine how the interaction contributes to this toxic effect using primary rat hippocampal neurons from both sexes. Pull-down and bioluminescence resonance energy transfer experiments revealed selective interactions of wild-type tau with PP1α and PP1γ isoforms, but not PP1ß, which were significantly increased by the P301L tau mutation. The results from proximity ligation assays confirmed the interaction in primary hippocampal neurons. Moreover, expression of FTLD-linked mutant tau in these neurons enhanced levels of active PP1, also increasing the pausing frequency of fluorescently labeled vesicles in both anterograde and retrograde directions. Knockdown of PP1γ, but not PP1α, rescued the cargo-pausing effects of P301L and R5L tau, a result replicated by deleting a phosphatase-activating domain in the amino terminus of P301L tau. These findings support a model of tau toxicity involving aberrant activation of a specific PP1γ-dependent pathway that disrupts axonal transport in neurons.SIGNIFICANCE STATEMENT Tau pathology is closely associated with neurodegeneration in Alzheimer's disease and other tauopathies, but the toxic mechanisms remain a debated topic. We previously proposed that pathologic tau forms induce dysfunction and degeneration through aberrant activation of a PP1-dependent pathway that disrupts axonal transport. Here, we show that tau directly interacts with specific PP1 isoforms, increasing levels of active PP1. Pathogenic tau mutations enhance this interaction, further increasing active PP1 levels and impairing axonal transport in isolated squid axoplasm and primary hippocampal neurons. Mutant-tau-mediated impairment of axonal transport was mediated by PP1γ and a phosphatase-activating domain located at the amino terminus of tau. This work has important implications for understanding and potentially mitigating tau-mediated neurotoxicity in tauopathies.


Asunto(s)
Transporte Axonal/efectos de los fármacos , Demencia Frontotemporal , Neuronas/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteínas tau/farmacología , Animales , Células Cultivadas , Decapodiformes , Femenino , Hipocampo , Humanos , Masculino , Mutación , Neuronas/efectos de los fármacos , Ratas , Proteínas tau/genética
3.
Ann Neurol ; 90(2): 274-284, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34185323

RESUMEN

OBJECTIVE: The MAST family of microtubule-associated serine-threonine kinases (STKs) have distinct expression patterns in the developing and mature human and mouse brain. To date, only MAST1 has been conclusively associated with neurological disease, with de novo variants in individuals with a neurodevelopmental disorder, including a mega corpus callosum. METHODS: Using exome sequencing, we identify MAST3 missense variants in individuals with epilepsy. We also assess the effect of these variants on the ability of MAST3 to phosphorylate the target gene product ARPP-16 in HEK293T cells. RESULTS: We identify de novo missense variants in the STK domain in 11 individuals, including 2 recurrent variants p.G510S (n = 5) and p.G515S (n = 3). All 11 individuals had developmental and epileptic encephalopathy, with 8 having normal development prior to seizure onset at <2 years of age. All patients developed multiple seizure types, 9 of 11 patients had seizures triggered by fever and 9 of 11 patients had drug-resistant seizures. In vitro analysis of HEK293T cells transfected with MAST3 cDNA carrying a subset of these patient-specific missense variants demonstrated variable but generally lower expression, with concomitant increased phosphorylation of the MAST3 target, ARPP-16, compared to wild-type. These findings suggest the patient-specific variants may confer MAST3 gain-of-function. Moreover, single-nuclei RNA sequencing and immunohistochemistry shows that MAST3 expression is restricted to excitatory neurons in the cortex late in prenatal development and postnatally. INTERPRETATION: In summary, we describe MAST3 as a novel epilepsy-associated gene with a potential gain-of-function pathogenic mechanism that may be primarily restricted to excitatory neurons in the cortex. ANN NEUROL 2021;90:274-284.


Asunto(s)
Epilepsia/diagnóstico por imagen , Epilepsia/genética , Variación Genética/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Serina-Treonina Quinasas/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Niño , Estudios de Cohortes , Epilepsia/metabolismo , Femenino , Estudios de Seguimiento , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/biosíntesis , Proteínas Serina-Treonina Quinasas/biosíntesis , Adulto Joven
4.
Adv Pharmacol ; 90: 39-65, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33706938

RESUMEN

Decades of research led by Paul Greengard identified protein phosphorylation as a ubiquitous and vital post-translational modification involved in many neuronal signaling pathways. In particular, his discovery that second messenger-regulated protein phosphorylation plays a central role in the propagation and transduction of signals in the nervous system has been essential in understanding the molecular mechanisms of neuronal communication. The establishment of dopamine (DA) as an essential neurotransmitter in the central nervous system, combined with observations that DA activates G-protein-coupled receptors to control the production of cyclic adenosine monophosphate (cAMP) in postsynaptic neurons, has provided fundamental insight into the regulation of neurotransmission. Notably, DA signaling in the striatum is involved in many neurological functions such as control of locomotion, reward, addiction, and learning, among others. This review focuses on the history, characterization, and function of cAMP-mediated regulation of serine/threonine protein phosphatases and their role in DA-mediated signaling in striatal neurons. Several small, heat- and acid-stable proteins, including DARPP-32, RCS, and ARPP-16/19, were discovered by the Greengard laboratory to be regulated by DA- and cAMP signaling, and found to undergo a complex but coordinated sequence of phosphorylation and dephosphorylation events. These studies have contributed significantly to the establishment of protein phosphorylation as a ubiquitous and vital process in signal propagation in neurons, paradigm shifting discoveries at the time. Understanding DA-mediated signaling in the context of signal propagation has led to numerous insights into human conditions and the development of treatments and therapies.


Asunto(s)
Cuerpo Estriado/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal , Animales , Humanos
5.
Front Aging Neurosci ; 12: 576723, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192469

RESUMEN

Age is the largest risk factor for Alzheimer's disease (AD) and contributes to cognitive impairment in otherwise healthy individuals. Thus, it is critical that we better understand the risk aging presents to vulnerable regions of the brain and carefully design therapeutics to address those effects. In this study we examined age-related changes in cAMP-regulatory protein, phosphodiesterase 4D (PDE4D). Inhibition of PDE4D is currently under investigation as a therapeutic target for AD based on memory-enhancing effects in rodent hippocampus. Therefore, it is important to understand the role of PDE4D in brain regions particularly vulnerable to disease such as the frontal association cortex (FC), where cAMP signaling can impair working memory via opening of potassium channels. We found that PDE4D protein level was decreased in the FC of both moderately and extremely aged rats, and that PDE4D level was correlated with performance on a FC-dependent working memory task. In extremely aged rats, PDE4D was also inversely correlated with levels of phosphorylated tau at serine 214 (S214), a site phosphorylated by protein kinase A. In vitro studies of the PDE4D inhibitor, GEBR-7b, further illustrated that inhibition of PDE4D activity enhanced phosphorylation of tau. pS214-tau phosphorylation is associated with early AD tau pathology, promotes tau dissociation from microtubules and primes subsequent tau hyperphosphorylation at other critical AD-related sites. Age-related loss of PDE4D may thus contribute to the specific vulnerability of the FC to degeneration in AD, and play a critical role in normal cAMP regulation, cautioning against the use of pan-PDE4D inhibitors as therapeutics.

6.
Acta Neuropathol Commun ; 7(1): 29, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30819250

RESUMEN

The deposition of tau pathology in Alzheimer's disease (AD) may occur first in axons of neurons and then progress back into the cell bodies to form neurofibrillary tangles, however, studies have not directly analyzed this relationship in relatively discrete circuits within the human hippocampus. In the early phases of tau deposition, both AT8 phosphorylation and exposure of the amino terminus of tau occurs in tauopathies, and these modifications are linked to mechanisms of synaptic and axonal dysfunction. Here, we examined the localization of these tau pathologies in well-characterized post-mortem human tissue samples from the hippocampus of 44 cases ranging between non-demented and mild cognitively impaired to capture a time at which intrahippocampal pathways show a range in the extent of tau deposition. The tissue sections were analyzed for AT8 (AT8 antibody), amino terminus exposure (TNT2 antibody), and amyloid-ß (MOAB2 antibody) pathology in hippocampal strata containing the axons and neuronal cell bodies of the CA3-Schaffer collateral and dentate granule-mossy fiber pathways. We show that tau pathology first appears in the axonal compartment of affected neurons in the absence of observable tau pathology in the corresponding cell bodies in several cases. Additionally, deposition of tau in these intrahippocampal pathways was independent of the presence of Aß plaques. We confirmed that the majority of tau pathology positive neuropil threads were axonal in origin and not dendritic using an axonal marker (i.e. SMI312 antibody) and somatodendritic marker (i.e. MAP2 antibody). Taken together, these results support the hypothesis that AT8 phosphorylation and amino terminus exposure are early pathological events and that the deposition of tau pathology, at least in the studied pathways, occurs first in the axonal compartment prior to observable pathology in the somata. These findings highlight the importance on targeting tau deposition, ideally in the initial phases of its deposition in axons.


Asunto(s)
Axones/patología , Dendritas/patología , Hipocampo/patología , Fibras Musgosas del Hipocampo/patología , Tauopatías/patología , Proteínas tau , Anciano , Anciano de 80 o más Años , Axones/metabolismo , Dendritas/metabolismo , Femenino , Hipocampo/metabolismo , Humanos , Masculino , Fibras Musgosas del Hipocampo/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...