Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 170: 479-495, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659728

RESUMEN

The stomatopod Odontodactylus scyllarus uses weaponized club-like appendages to attack its prey. These clubs are made of apatite, chitin, amorphous calcium carbonate, and amorphous calcium phosphate organized in a highly hierarchical structure with multiple regions and layers. We follow the development of the biomineralized club as a function of time using clubs harvested at specific times since molting. The clubs are investigated using a broad suite of techniques to unravel the biomineralization history of the clubs. Nano focus synchrotron x-ray diffraction and x-ray fluorescence experiments reveal that the club structure is more organized with more sub-regions than previously thought. The recently discovered impact surface has crystallites in a different size and orientation than those in the impact region. The crystal unit cell parameters vary to a large degree across individual samples, which indicates a spatial variation in the degree of chemical substitution. Energy dispersive spectroscopy and Raman spectroscopy show that this variation cannot be explained by carbonation and fluoridation of the lattice alone. X-ray fluorescence and mass spectroscopy show that the impact surface is coated with a thin membrane rich in bromine that forms at very initial stages of club formation. Proteomic studies show that a fraction of the club mineralization protein-1 has brominated tyrosine suggesting that bromination of club proteins at the club surface is an integral component of the club design. Taken together, the data unravel the spatio-temporal changes in biomineral structure during club formation. STATEMENT OF SIGNIFICANCE: Mantis shrimp hunt using club-like appendages that contain apatite, chitin, amorphous calcium carbonate, and amorphous calcium phosphate ordered in a highly hierarchical structure. To understand the formation process of the club we analyze clubs harvested at specific times since molting thereby constructing a club formation map. By combining several methods ranging from position resolved synchrotron X-ray diffraction to proteomics, we reveal that clubs form from an organic membrane with brominated protein and that crystalline apatite phases are present from the very onset of club formation and grow in relative importance over time. This reveals a complex biomineralization process leading to these fascinating biomineralized tools.


Asunto(s)
Apatitas , Biomineralización , Animales , Apatitas/química , Muda , Proteómica , Crustáceos , Carbonato de Calcio , Quitina , Difracción de Rayos X
2.
IUCrJ ; 10(Pt 3): 288-296, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36912686

RESUMEN

The stomatopod is a fascinating animal that uses its weaponized appendage dactyl clubs for breaking mollusc shells. Dactyl clubs are a well studied example of biomineralized hierarchical structures. Most research has focused on the regions close to the action, namely the impact region and surface composed of chitin and apatite crystallites. Further away from the site of impact, the club has lower mineralization and more amorphous phases; these areas have not been as actively studied as their highly mineralized counterparts. This work focuses on the side of the club, in what is known as the periodic and striated regions. A combination of laboratory micro-computed tomography, synchrotron X-ray diffraction mapping and synchrotron X-ray fluorescence mapping has shown that the mineral in this region undergoes the transition from an amorphous to a crystalline phase in some, but not all, clubs. This means that this side region can be mineralized by either an amorphous phase, calcite crystallites or a mixture of both. It was found that when larger calcite crystallites form, they are organized (textured) with respect to the chitin present in this biocomposite. This suggests that chitin may serve as a template for crystallization when the side of the club is fully mineralized. Further, calcite crystallites were found to form as early as 1 week after moulting of the club. This suggests that the side of the club is designed with a significant safety margin that allows for a variety of phases, i.e. the club can function independently of whether the side region has a crystalline or amorphous mineral phase.


Asunto(s)
Apatitas , Carbonato de Calcio , Animales , Microtomografía por Rayos X , Carbonato de Calcio/química , Quitina/química
3.
J Synchrotron Radiat ; 29(Pt 6): 1420-1428, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36345750

RESUMEN

As synchrotron facilities continue to generate increasingly brilliant X-rays and detector speeds increase, swift data reduction from the collected area detector images to more workable 1D diffractograms becomes of increasing importance. This work reports an integration algorithm that can integrate diffractograms in real time on modern laptops and can reach 10 kHz integration speeds on modern workstations using an efficient pixel-splitting and parallelization scheme. This algorithm is limited not by the computation of the integration itself but is rather bottlenecked by the speed of the data transfer to the processor, the data decompression and/or the saving of results. The algorithm and its implementation is described while the performance is investigated on 2D scanning X-ray diffraction/fluorescence data collected at the interface between an implant and forming bone.


Asunto(s)
Algoritmos , Sincrotrones , Difracción de Rayos X , Rayos X , Radiografía
4.
ACS Biomater Sci Eng ; 8(2): 620-625, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35099935

RESUMEN

It is well known that strontium (Sr) has a significant effect on peri-implant bone healing when administered systemically. Due to the risk of adverse effects of such treatments, new routes focusing on the local, sustained release of Sr from bone-implant contact surfaces have been explored, with success in in vivo experiments. However, the increase of Sr concentrations in the peri-implant bone has not been described in depth yet. Here, we show that a local, sustained Sr release from Ti-Sr-O physical vapor deposition (PVD) coatings by magnetron sputter coating increases the Sr/Ca ratio close to the implant in a rabbit model and that the Sr/Ca background level is reached approximately 500 µm from the implant.


Asunto(s)
Oseointegración , Estroncio , Animales , Calcio/farmacología , Materiales Biocompatibles Revestidos/farmacología , Conejos , Estroncio/farmacología , Propiedades de Superficie , Titanio/farmacología
5.
J Struct Biol ; 214(1): 107822, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34902560

RESUMEN

Biominerals typically have complex hierarchical structures traversing many length scales. This makes their structural characterization complicated, since it requires 3D techniques that can probe full specimens at down to nanometer-resolution, a combination that is difficult - if not impossible - to achieve simultaneously. One challenging example is bone, a mineralized tissue with a highly complex architecture that is replete with a network of cells. X-ray computed tomography techniques enable multiscale structural characterization through the combination of various equipment and emerge as promising tools for characterizing biominerals. Using bone as an example, we discuss how combining different X-ray imaging instruments allow characterizing bone structures from the nano- to the organ-scale. In particular, we compare and contrast human and rodent bone, emphasize the importance of the osteocyte lacuno-canalicular network in bone, and finally illustrate how combining synchrotron X-ray imaging with laboratory instrumentation for computed tomography is especially helpful for multiscale characterization of biominerals.


Asunto(s)
Biomineralización , Huesos , Huesos/diagnóstico por imagen , Imagenología Tridimensional , Osteocitos , Sincrotrones , Tomografía Computarizada por Rayos X
6.
J Chem Phys ; 150(4): 041706, 2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30709274

RESUMEN

Properties of solid-liquid interfaces are of immense importance for electrocatalytic and electrochemical systems, but modeling such interfaces at the atomic level presents a serious challenge and approaches beyond standard methodologies are needed. An atomistic computational scheme needs to treat at least part of the system quantum mechanically to describe adsorption and reactions, while the entire system is in thermal equilibrium. The experimentally relevant macroscopic control variables are temperature, electrode potential, and the choice of the solvent and ions, and these need to be explicitly included in the computational model as well; this calls for a thermodynamic ensemble with fixed ion and electrode potentials. In this work, a general framework within density functional theory (DFT) with fixed electron and ion chemical potentials in the grand canonical (GC) ensemble is established for modeling electrocatalytic and electrochemical interfaces. Starting from a fully quantum mechanical description of multi-component GC-DFT for nuclei and electrons, a systematic coarse-graining is employed to establish various computational schemes including (i) the combination of classical and electronic DFTs within the GC ensemble and (ii) on the simplest level a chemically and physically sound way to obtain various (modified) Poisson-Boltzmann (mPB) implicit solvent models. The detailed and rigorous derivation clearly establishes which approximations are needed for coarse-graining as well as highlights which details and interactions are omitted in vein of computational feasibility. The transparent approximations also allow removing some of the constraints and coarse-graining if needed. We implement various mPB models within a linear dielectric continuum in the GPAW code and test their capabilities to model capacitance of electrochemical interfaces as well as study different approaches for modeling partly periodic charged systems. Our rigorous and well-defined DFT coarse-graining scheme to continuum electrolytes highlights the inadequacy of current linear dielectric models for treating properties of the electrochemical interface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...