Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunol Methods ; 496: 113099, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34224737

RESUMEN

Bispecific antibodies (BsAbs) are engineered to simultaneously bind two different antigens, and offer promising clinical outcomes for various diseases. The dual binding properties of BsAbs may enable superior efficacies and/or potencies compared to standard monoclonal antibodies (mAbs) or combination mAb therapies. Characterizing BsAb binding properties is critical during biotherapeutic development, where data is leveraged to predict efficacy and potency, assess critical quality attributes and improve antibody design. Traditional single-target, single-readout approaches (e.g., ELISA) have limited usefulness for interpreting complex bispecific binding, and double the benchwork. To address these deficiencies, we developed and implemented a new dual-target/readout binding assay that accurately dissects the affinities of both BsAb binding domains directly and simultaneously. This new assay uses AlphaPlex® technology, which eliminates traditional ELISA wash steps and can be miniaturized for automated workflows. The optimized BsAb AlphaPlex assay demonstrates 99-107% accuracy within a 50-150% linear range, and detected >50% binding degradation from photo- and thermal stress conditions. To the best of our knowledge, this is the first instance of a dual-target/readout BsAb AlphaPlex assay with GMP-suitable linear range, accuracy, specificity, and stability-indicating properties. As a highly customizable and efficient assay, BsAb AlphaPlex may be applicable to numerous bispecific formats and/or co-formulations against a variety of antigens beyond the clinical therapeutic space.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Especificidad de Anticuerpos , Antígenos/inmunología , Antígeno CTLA-4/inmunología , Inmunoensayo , Receptor de Muerte Celular Programada 1/inmunología , Anticuerpos Biespecíficos/metabolismo , Complejo Antígeno-Anticuerpo , Antígenos/metabolismo , Sitios de Unión de Anticuerpos , Tampones (Química) , Antígeno CTLA-4/metabolismo , Ensayo de Inmunoadsorción Enzimática , Epítopos , Humanos , Concentración de Iones de Hidrógeno , Cinética , Valor Predictivo de las Pruebas , Receptor de Muerte Celular Programada 1/metabolismo , Unión Proteica , Reproducibilidad de los Resultados
2.
MAbs ; 12(1): 1779974, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32633193

RESUMEN

IgG4s are dynamic molecules that undergo a process called Fab-arm exchange. Disulfide bonds between heavy chains are transiently reduced, resulting in half antibodies that reform intact antibodies with other IgG4 half antibodies. In vivo, therapeutic IgG4s can recombine with endogenous IgG4s, resulting in a heterogeneous mixture of bispecific antibodies. A related issue that can occur for any therapeutic protein during manufacturing is interchain disulfide bond reduction. For IgG4s, this primarily results in high levels of half-mAb that persist through purification processes. The S228P mutation has been used to prevent half-mAb formation. However, we demonstrated that IgG4s with the S228P mutation are subject to half-mAb formation and Fab-arm exchange in reducing environments. We identified two novel mutations that stabilize the heavy-heavy chain interaction via incorporation of additional disulfide bonds in the hinge region. Individually, these mutations increase stability toward reduction and lessen Fab-arm exchange. Combination of all three mutations, Y219C, G220C, and S228P, has an additive benefit resulting in an IgG4 with ˃7-fold increase in stability toward reduction while preventing Fab-arm exchange. Importantly, the mutations do not affect antigen binding or Fc effector function. These mutations hold great promise for solving mAb reduction during manufacturing and preventing Fab-arm exchange in vivo.


Asunto(s)
Anticuerpos Monoclonales , Fragmentos Fab de Inmunoglobulinas , Inmunoglobulina G , Simulación de Dinámica Molecular , Sustitución de Aminoácidos , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/genética , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/genética , Inmunoglobulina G/química , Inmunoglobulina G/genética , Mutación Missense
3.
PLoS Pathog ; 10(4): e1004072, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24743696

RESUMEN

We recently described our most potently neutralizing monoclonal antibody, E106, which protected against lethal Dengue virus type 1 (DENV-1) infection in mice. To further understand its functional properties, we determined the crystal structure of E106 Fab in complex with domain III (DIII) of DENV-1 envelope (E) protein to 2.45 Šresolution. Analysis of the complex revealed a small antibody-antigen interface with the epitope on DIII composed of nine residues along the lateral ridge and A-strand regions. Despite strong virus neutralizing activity of E106 IgG at picomolar concentrations, E106 Fab exhibited a ∼20,000-fold decrease in virus neutralization and bound isolated DIII, E, or viral particles with only a micromolar monovalent affinity. In comparison, E106 IgG bound DENV-1 virions with nanomolar avidity. The E106 epitope appears readily accessible on virions, as neutralization was largely temperature-independent. Collectively, our data suggest that E106 neutralizes DENV-1 infection through bivalent engagement of adjacent DIII subunits on a single virion. The isolation of anti-flavivirus antibodies that require bivalent binding to inhibit infection efficiently may be a rare event due to the unique icosahedral arrangement of envelope proteins on the virion surface.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Virus del Dengue , Dengue , Inmunoglobulina G , Proteínas del Envoltorio Viral , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/farmacología , Afinidad de Anticuerpos , Dengue/tratamiento farmacológico , Dengue/inmunología , Virus del Dengue/química , Virus del Dengue/genética , Virus del Dengue/inmunología , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Inmunoglobulina G/química , Inmunoglobulina G/inmunología , Inmunoglobulina G/farmacología , Ratones , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Virión/química , Virión/genética , Virión/inmunología
4.
Proc Natl Acad Sci U S A ; 110(46): 18662-7, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24158478

RESUMEN

A number of structures have been solved for the Envelope (E) protein from dengue virus and closely related flaviviruses, providing detailed pictures of the conformational states of the protein at different stages of infectivity. However, the key functional residues responsible for mediating the dynamic changes between these structures remain largely unknown. Using a comprehensive library of functional point mutations covering all 390 residues of the dengue virus E protein ectodomain, we identified residues that are critical for virus infectivity, but that do not affect E protein expression, folding, virion assembly, or budding. The locations and atomic interactions of these critical residues within different structures representing distinct fusogenic conformations help to explain how E protein (i) regulates fusion-loop exposure by shielding, tethering, and triggering its release; (ii) enables hinge movements between E domain interfaces during triggered structural transformations; and (iii) drives membrane fusion through late-stage zipper contacts with stem. These results provide structural targets for drug and vaccine development and integrate the findings from structural studies and isolated mutagenesis efforts into a cohesive model that explains how specific residues in this class II viral fusion protein enable virus infectivity.


Asunto(s)
Virus del Dengue/genética , Dengue/metabolismo , Modelos Moleculares , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Virus del Dengue/metabolismo , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Células HEK293 , Humanos , Luciferasas de Renilla , Proteínas del Envoltorio Viral/genética , Virión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA