Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 13: 1233039, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38125942

RESUMEN

Background: Expression of Zona Pellucida glycoprotein 3 (ZP3) in healthy tissue is restricted to the extracellular Zona Pellucida layer surrounding oocytes of ovarian follicles and to specific cells of the spermatogenic lineage. Ectopic expression of ZP3 has been observed in various types of cancer, rendering it a possible therapeutic target. Methods: To support its validity as therapeutic target, we extended the cancer related data by investigating ZP3 expression using immunohistochemistry (IHC) of tumor biopsies. We performed a ZP3 transcript specific analysis of publicly available RNA-sequencing (RNA-seq) data of cancer cell lines (CCLs) and tumor and normal tissues, and validated expression data by independent computational analysis and real-time quantitative PCR (qPCR). A correlation between the ZP3 expression level and pathological and clinical parameters was also investigated. Results: IHC data for several cancer types showed abundant ZP3 protein staining, which was confined to the cytoplasm, contradicting the extracellular protein localization in oocytes. We noticed that an alternative ZP3 RNA transcript, which we term 'ZP3-Cancer', was annotated in gene databases that lacks the genetic information encoding the N-terminal signal peptide that governs entry into the secretory pathway. This explains the intracellular localization of ZP3 in tumor cells. Analysis of publicly available RNA-seq data of 1339 cancer cell lines (CCLs), 10386 tumor tissues (The Cancer Genome Atlas) and 7481 healthy tissues (Genotype-Tissue Expression) indicated that ZP3-Cancer is the dominant ZP3 RNA transcript in tumor cells and is highly enriched in many cancer types, particularly in rectal, ovarian, colorectal, prostate, lung and breast cancer. Expression of ZP3-Cancer in tumor cells was confirmed by qPCR. Higher levels of the ZP3-Cancer transcript were associated with more aggressive tumors and worse survival of patients with various types of cancer. Conclusion: The cancer-restricted expression of ZP3-Cancer renders it an attractive tumor antigen for the development of a therapeutic cancer vaccine, particularly using mRNA expression technologies.

2.
Mol Cancer Ther ; 21(12): 1765-1776, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36129801

RESUMEN

Binding of steroid hormones to their cognate receptors regulates the growth of most prostate and breast cancers. We hypothesized that CYP11A inhibition might halt the synthesis of all steroid hormones, because CYP11A is the only enzyme that catalyses the first step of steroid hormone biosynthesis. We speculated that a CYP11A inhibitor could be administered safely provided that the steroids essential for life are replaced. Virtual screening and systematic structure-activity relationship optimization were used to develop ODM-208, the first-in-class, selective, nonsteroidal, oral CYP11A1 inhibitor. Safety of ODM-208 was assessed in rats and Beagle dogs, and efficacy in a VCaP castration-resistant prostate cancer (CRPC) xenograft mouse model, in mice and dogs, and in six patients with metastatic CRPC. Blood steroid hormone concentrations were measured using liquid chromatography-mass spectrometry. ODM-208 binds to CYP11A1 and inhibited its enzymatic activity. ODM-208 administration led to rapid, complete, durable, and reversible inhibition of the steroid hormone biosynthesis in an adrenocortical carcinoma cell model in vitro, in adult noncastrated male mice and dogs, and in patients with CRPC. All measured serum steroid hormone concentrations reached undetectable levels within a few weeks from the start of ODM-208 administration. ODM-208 was well tolerated with steroid hormone replacement. The toxicity findings were considered related to CYP11A1 inhibition and were reversed after stopping of the compound administration. Steroid hormone biosynthesis can be effectively inhibited with a small-molecule inhibitor of CYP11A1. The findings suggest that administration of ODM-208 is feasible with concomitant corticosteroid replacement therapy.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Neoplasias de la Próstata Resistentes a la Castración , Humanos , Masculino , Animales , Ratones , Ratas , Perros , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol , Próstata , Modelos Animales de Enfermedad , Hormonas
3.
Thyroid ; 32(4): 459-471, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35044245

RESUMEN

Background: The human adrenal cortex undergoes several rapid remodeling steps during its lifetime. In rodents, similar remodeling occurs postnatally in the "X-zone" layer through unknown mechanisms. Furthermore, little is known regarding the impact of thyroid hormone (TH) on adrenal glands in humans. Methods: To investigate the impact of TH on adrenal pathophysiology, we created two genetic murine models mimicking human nonautoimmune hypothyroidism and hyperthyroidism. Moreover, we analyzed serum thyrotropin (TSH) and steroid hormone concentrations in patients diagnosed with congenital hypothyroidism and premature adrenarche (PA). Results: We found that TH receptor beta-mediated hypertrophy of the X-zone significantly elevated the adrenal weights of hyperthyroid women. In the hypothyroid model, the X-zone was poorly developed in both sexes. Moreover, large reciprocal changes in the expression levels of genes that regulate adrenal cortical function were observed with both models. Unexpectedly, up- and downregulation of several genes involved in catecholamine synthesis were detected in the adrenal glands of the hypothyroid and hyperthyroid models, respectively. Furthermore, TSH and adrenal steroid concentrations correlated positively in pediatric patients with congenital hypothyroidism and PA. Conclusions: Our results revealed that congenital hypothyroidism and hyperthyroidism functionally affect adrenal gland development and related steroidogenic activity, as well as the adrenal medulla.


Asunto(s)
Hipotiroidismo Congénito , Hipertiroidismo , Animales , Niño , Hipotiroidismo Congénito/genética , Femenino , Expresión Génica , Humanos , Masculino , Ratones , Hormonas Tiroideas , Tirotropina
4.
Mol Cell Endocrinol ; 539: 111502, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34736966

RESUMEN

The expression of the zona pellucida glycoprotein 3 (ZP3), originally thought to be specific for oocytes, was recently extended to ovarian, prostate, colorectal and lung cancers. Earlier successful ZP3 immunization of a transgenic mouse model carrying a ZP3 positive ovarian tumor emphasized the suitability of ZP3 for cancer immunotherapy. This study was carried out to determine whether any other normal tissues besides the ovary in healthy human and mouse tissues may express ZP3, considered important to exclude off-target effects of ZP3 cancer immunotherapy. Strong ZP3 expression was found in normal human and mouse testis. ZP3 protein and mRNA transcripts were localized in spermatogonia, spermatocytes and round and elongated spermatids of both human and mouse testis, as well as in a mouse spermatogonial cell line, but absent in testicular Sertoli, Leydig, spermatogonial stem and progenitor cells. All other normal human and mouse tissues were ZP3 negative. This surprising testicular ZP3 expression has implications for the development of ZP3 cancer immunotherapies, and it also alludes to the potential of using ZP3 as a target for the development of a male immunocontraceptive.


Asunto(s)
Testículo/metabolismo , Regulación hacia Arriba , Glicoproteínas de la Zona Pelúcida/genética , Glicoproteínas de la Zona Pelúcida/metabolismo , Adulto , Animales , Línea Celular , Humanos , Masculino , Ratones , Persona de Mediana Edad , Células de Sertoli/metabolismo , Espermátides/metabolismo , Espermatocitos/metabolismo , Espermatogonias/metabolismo , Distribución Tisular
5.
FASEB J ; 35(4): e21464, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33724574

RESUMEN

Chemical castration in prostate cancer can be achieved with gonadotropin-releasing hormone (GnRH) agonists or antagonists. Their effects differ by the initial flare of gonadotropin and testosterone secretion with agonists and the immediate pituitary-testicular suppression by antagonists. While both suppress luteinizing hormone (LH) and follicle-stimulating hormone (FSH) initially, a rebound in FSH levels occurs during agonist treatment. This rebound is potentially harmful, taken the expression of FSH receptors (R) in prostate cancer tissue. We herein assessed the role of FSH in promoting the growth of androgen-independent (PC-3, DU145) and androgen-dependent (VCaP) human prostate cancer cell line xenografts in nude mice. Gonadotropins were suppressed with the GnRH antagonist degarelix, and effects of add-back human recombinant FSH were assessed on tumor growth. All tumors expressed GnRHR and FSHR, and degarelix treatment suppressed their growth. FSH supplementation reversed the degarelix-evoked suppression of PC-3 tumors, both in preventive (degarelix and FSH treatment started upon cell inoculation) and therapeutic (treatments initiated 3 weeks after cell inoculation) setting. A less marked, though significant FSH effect occurred in DU145, but not in VCaP xenografts. FSHR expression in the xenografts supports direct FSH stimulation of tumor growth. Testosterone supplementation, to maintain the VCaP xenografts, apparently masked the FSH effect on their growth. Treatment with the LH analogue hCG did not affect PC-3 tumor growth despite their expression of luteinizing hormone/choriongonadotropin receptor. In conclusion, FSH, but not LH, may directly stimulate the growth of androgen-independent prostate cancer, suggesting that persistent FSH suppression upon GnRH antagonist treatment offers a therapeutic advantage over agonist.


Asunto(s)
Hormona Folículo Estimulante/farmacología , Xenoinjertos/efectos de los fármacos , Hormona Luteinizante/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Andrógenos/farmacología , Animales , Línea Celular , Hormona Folículo Estimulante/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/farmacología , Humanos , Masculino , Ratones Desnudos , Neoplasias de la Próstata/metabolismo , Receptores de HFE , Testículo/metabolismo , Testosterona/farmacología
6.
Cancers (Basel) ; 12(11)2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158280

RESUMEN

The selective progesterone receptor modulator mifepristone (MF) may act as a potent antiproliferative agent in different steroid-dependent cancers due to its strong antagonistic effect on the nuclear progesterone receptor (PGR). Hereby, we analyzed the effects of MF treatment on Leydig cell tumor (LCT) progression in a transgenic mouse model (inhibin-α promoter-driven SV40 T-antigen), as well as on LCT (BLTK-1 and mLTC-1) cell proliferation. MF significantly stimulated the proliferation of LCT in vitro. Similarly, a 1-mo MF or P4 treatment stimulated LCT tumor growth in vivo. Traceable/absent classical Pgr or nonclassical membrane PRs α, ß, γ and Pgrmc2, but abundant membrane Pgrmc1 expression, was found in LCTs. MF did not activate glucocorticoid or androgen receptors in LCTs. Functional analysis showed that PGRMC1 is required for MF and P4 to stimulate the proliferation and invasiveness of LCTs. Accordingly, MF and P4 induced PGRMC1 translocation into the nucleus and thereby stimulated the release of TGFß1 in LCT cells. MF and P4 treatments upregulated Tgfbr1, Tgfbr2, and Alk1 expression and stimulated TGFß1 release in LCT cells. Our findings provide novel mechanistic insights into the action of MF as a membrane PR agonist that promotes LCT growth through PGRMC1 and the alternative TGFß1 signaling pathway.

7.
EBioMedicine ; 47: 170-183, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31466918

RESUMEN

BACKGROUND: Recent clinical trials on ovarian cancer with mifepristone (MF) have failed, despite in vitro findings on its strong progesterone (P4) antagonist function. METHODS: Ovarian cancer human and murine cell lines, cultured high-grade human primary epithelial ovarian cancer (HG-hOEC) cells and their explants; as well as in vivo transgenic mice possessing ovarian cancer were used to assess the molecular mechanism underlying mifepristone (MF) agonistic actions in ovarian cancer progression. FINDINGS: Herein, we show that ovarian cancer cells express traceable/no nuclear P4 receptor (PGR), but abundantly P4 receptor membrane component 1 (PGRMC1). MF significantly stimulated ovarian cancer cell migration, proliferation and growth in vivo, and the translocation of PGRMC1 into the nucleus of cancer cells; the effects inhibited by PGRMC1 inhibitor. The beneficial antitumor effect of high-doses MF could not be achieved in human cancer tissue, and the low tissue concentrations achieved with the therapeutic doses only promoted the growth of ovarian cancers. INTERPRETATION: Our results indicate that treatment of ovarian cancer with MF and P4 may induce similar adverse agonistic effects in the absence of classical nuclear PGRs in ovarian cancer. The blockage of PGRMC1 activity may provide a novel treatment strategy for ovarian cancer. FUND: This work was supported by grants from the National Science Centre, Poland (2013/09/N/NZ5/01831 to DP-T; 2012/05/B/NZ5/01867 to MC), Academy of Finland (254366 to NAR), Moikoinen Cancer Research Foundation (to NAR) and EU PARP Cluster grant (UDA-POIG.05.01.00-005/12-00/NCREMFP to SW).


Asunto(s)
Antineoplásicos Hormonales/farmacología , Mifepristona/farmacología , Animales , Antineoplásicos Hormonales/administración & dosificación , Antineoplásicos Hormonales/farmacocinética , Biomarcadores , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/metabolismo , Carcinoma Epitelial de Ovario/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Células Cultivadas , Femenino , Humanos , Inmunohistoquímica , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Mifepristona/administración & dosificación , Mifepristona/farmacocinética , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
8.
J Steroid Biochem Mol Biol ; 193: 105420, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31283987

RESUMEN

Mutations in the X-linked androgen receptor (AR) gene cause complete androgen insensitivity syndrome (CAIS). CAIS may cause congenital sexual development disorder, which frequently develops into testicular tumors. Here, we describe a novel splice-site intron 1 mutation in AR leading to improper splicing and AR protein absence in CAIS gonads. We characterized a patient's postpubertal gonadal steroidogenic enzyme expression profile. Localization of both CYP11A1 and CYP17A1 enzymes was restricted to both Leydig tumor cells and adjacent to tumor gonadal tissues. Sertoli cells of the CAIS gonad showed abundant HSD17B3 protein, which is an adult Leydig cell marker that enables the conversion of androstenedione to testosterone. Such HSD17B3 expression is typical for fetal-type Sertoli cells in rodents. The postpubertal CAIS gonad of our patient was completely devoid of androgen signaling pathway activity. Plausibly, the postpubertal Leydig cells consisted of two distinct cell populations: postpubertal fetal-type Leydig cells that persisted as androgen-independent cells and immature adult Leydig cells that failed to differentiate. Taken together, in this CAIS postpubertal testis, both Leydig and fetal-type Sertoli cells participated in testosterone production. Our results indicate the importance of molecular analysis as well as the characterization of steroidogenic enzyme profiling in the CAIS patient's gonad.


Asunto(s)
Síndrome de Resistencia Androgénica/genética , Receptores Androgénicos/genética , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , Síndrome de Resistencia Androgénica/metabolismo , Andrógenos/metabolismo , Femenino , Feto/metabolismo , Gónadas/metabolismo , Hormonas/sangre , Humanos , Intrones , Masculino , Mutación , Receptores Androgénicos/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-30778333

RESUMEN

Expression of the follicle-stimulating hormone receptor (FSHR), besides gonadal tissues, has recently been detected in several extragonadal normal and tumorous tissues, including different types of primary and metastatic cancer and tumor vessel endothelial cells (TVEC). The suggested FSH actions in extragonadal tissues include promotion of angiogenesis, myometrial contractility, skeletal integrity, and adipose tissue accumulation. Non-malignant cells within cancer tissue have been shown to be devoid of FSHR expression, which implies a potential role of FSHR as a diagnostic, prognostic, or even a therapeutic tool. There are shared issues between several of the published reports questioning the validity of some of the conclusion. Firstly, protein expression of FSHR was performed solely with immunohistochemistry (IHC) using either an unavailable "in house" FSHR323 monoclonal antibody or poorly validated polyclonal antibodies, usually without additional methodological quality control and confirmations. Secondly, there is discrepancy between the hardly traceable or absent FSHR gene amplification/transcript data and non-reciprocal strong FSHR protein immunoreactivity. Thirdly, the pharmacological high doses of recombinant FSH used in in vitro studies also jeopardizes the physiological or pathophysiological meaning of the findings. We performed in this review a critical analysis of the results presenting extragonadal expression of FSHR and FSH action, and provide a rationale for the validation of the reported results using additional more accurate and sensitive supplemental methods, including in vivo models and proper positive and negative controls.

10.
Endocr Relat Cancer ; 26(1): 103-117, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30400009

RESUMEN

Aberrantly expressed G protein-coupled receptors in tumors are considered as potential therapeutic targets. We analyzed the expressions of receptors of gonadotropin-releasing hormone (GNRHR), luteinizing hormone/chorionic gonadotropin (LHCGR) and follicle-stimulating hormone (FSHR) in human adrenocortical carcinomas and assessed their response to GnRH antagonist therapy. We further studied the effects of the GnRH antagonist cetrorelix acetate (CTX) on cultured adrenocortical tumor (ACT) cells (mouse Cα1 and Y-1, and human H295R), and in vivo in transgenic mice (SV40 T-antigen expression under inhibin α promoter) bearing Lhcgr and Gnrhr in ACT. Both models were treated with control (CT), CTX, human chorionic gonadotropin (hCG) or CTX+hCG, and their growth and transcriptional changes were analyzed. In situ hybridization and qPCR analysis of human adrenocortical carcinomas (n = 11-13) showed expression of GNRHR in 54/73%, LHCGR in 77/100% and FSHR in 0%, respectively. CTX treatment in vitro decreased cell viability and proliferation, and increased caspase 3/7 activity in all treated cells. In vivo, CTX and CTX+hCG (but not hCG alone) decreased ACT weights and serum LH and progesterone concentrations. CTX treatment downregulated the tumor markers Lhcgr and Gata4. Upregulated genes included Grb10, Rerg, Nfatc and Gnas, all recently found to be abundantly expressed in healthy adrenal vs ACT. Our data suggest that CTX treatment may improve the therapy of human adrenocortical carcinomas by direct action on GNRHR-positive cancer cells inducing apoptosis and/or reducing gonadotropin release, directing tumor cells towards a healthy adrenal gene expression profile.


Asunto(s)
Neoplasias de la Corteza Suprarrenal/tratamiento farmacológico , Hormona Liberadora de Gonadotropina/análogos & derivados , Hormona Liberadora de Gonadotropina/antagonistas & inhibidores , Antagonistas de Hormonas/uso terapéutico , Neoplasias de la Corteza Suprarrenal/genética , Neoplasias de la Corteza Suprarrenal/metabolismo , Neoplasias de la Corteza Suprarrenal/patología , Adulto , Anciano , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica , Hormona Liberadora de Gonadotropina/farmacología , Hormona Liberadora de Gonadotropina/uso terapéutico , Antagonistas de Hormonas/farmacología , Humanos , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Receptores de HFE/genética , Receptores de HFE/metabolismo , Receptores de HL/genética , Receptores de HL/metabolismo , Receptores LHRH/genética , Receptores LHRH/metabolismo
11.
J Clin Invest ; 128(5): 1787-1792, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29584617

RESUMEN

Spermatogenesis is regulated by the 2 pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). This process is considered impossible without the absolute requirement of LH-stimulated testicular testosterone (T) production. The role of FSH remains unclear because men and mice with inactivating FSH receptor (FSHR) mutations are fertile. We revisited the role of FSH in spermatogenesis using transgenic mice expressing a constitutively strongly active FSHR mutant in a LH receptor-null (LHR-null) background. The mutant FSHR reversed the azoospermia and partially restored fertility of Lhr-/- mice. The finding was initially ascribed to the residual Leydig cell T production. However, when T action was completely blocked with the potent antiandrogen flutamide, spermatogenesis persisted. Hence, completely T-independent spermatogenesis is possible through strong FSHR activation, and the dogma of T being a sine qua non for spermatogenesis may need modification. The mechanism for the finding appeared to be that FSHR activation maintained the expression of Sertoli cell genes considered androgen dependent. The translational message of our findings is the possibility of developing a new strategy of high-dose FSH treatment for spermatogenic failure. Our findings also provide an explanation of molecular pathogenesis for Pasqualini syndrome (fertile eunuchs; LH/T deficiency with persistent spermatogenesis) and explain how the hormonal regulation of spermatogenesis has shifted from FSH to T dominance during evolution.


Asunto(s)
Hormona Folículo Estimulante/metabolismo , Células Intersticiales del Testículo/metabolismo , Receptores de HFE/metabolismo , Células de Sertoli/metabolismo , Espermatogénesis , Andrógenos/genética , Andrógenos/metabolismo , Animales , Hormona Folículo Estimulante/genética , Masculino , Ratones , Ratones Transgénicos , Receptores de HFE/genética , Receptores de HL/metabolismo , Testosterona/genética , Testosterona/metabolismo
12.
Endocrinology ; 159(1): 297-309, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29029022

RESUMEN

The goal of this study was to characterize the function of microRNA-27a-3p (miR-27a-3p) in polycystic ovary syndrome (PCOS). miR-27a-3p expression was analyzed in excised granulosa cells (GCs) from 21 patients with PCOS and 12 normal patients undergoing in vitro fertilization cycle treatments and in 17 nontreated cuneiform ovarian resection PCOS samples and 13 control ovarian samples from patients without PCOS. We found that the expression of miR-27a-3p was significantly increased in both excised GCs and the ovaries of patients with PCOS compared with the controls. Insulin treatment of the human granulosa-like tumor cell line (KGN) resulted in decreased downregulated expression of miR-27a-3p, and this effect appeared to be mediated by signal transducer and activator of transcription STAT1 and STAT3. The overexpression of miR-27a-3p in KGN cells inhibited SMAD5, which in turn decreased cell proliferation and promoted cell apoptosis. After KGN cells were stimulated with insulin for 48 hours, there was increased expression of SMAD5 protein and decreased apoptosis. Additionally, knockdown/overexpression of SMAD5 in KGN cells reduced/increased cell number and promoted/inhibited cell apoptosis. Insulin-stimulated primary GCs isolated from patients with PCOS, in contrast to normal GCs or KGN cells, did not exhibit decreased miR-27a-3p expression. The differences in the expression levels in KGN cells and human PCOS GCs are likely explained by increased miR-27a-3p expression in the GCs caused by insulin resistance in PCOS. Taken together, our data provided evidence for a functional role of miR-27a-3p in the GCs' dysfunction that occurs in patients with PCOS.


Asunto(s)
Apoptosis , Regulación de la Expresión Génica , Células de la Granulosa/metabolismo , MicroARNs/metabolismo , Síndrome del Ovario Poliquístico/metabolismo , Proteína Smad5/antagonistas & inhibidores , Adulto , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Tumor de Células de la Granulosa/tratamiento farmacológico , Tumor de Células de la Granulosa/metabolismo , Tumor de Células de la Granulosa/patología , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/patología , Humanos , Hipoglucemiantes/farmacología , Insulina/farmacología , Resistencia a la Insulina , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/patología , ARN/metabolismo , Interferencia de ARN , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Factor de Transcripción STAT1/antagonistas & inhibidores , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Proteína Smad5/agonistas , Proteína Smad5/genética , Proteína Smad5/metabolismo
13.
J Endocr Soc ; 1(1): 57-71, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29264446

RESUMEN

CONTEXT: Elevated human choriogonadotropin (hCG) may stimulate aberrantly expressed luteinizing hormone (LH)/hCG receptor (LHCGR) in adrenal glands, resulting in pregnancy-induced bilateral macronodular adrenal hyperplasia and transient Cushing syndrome (CS). OBJECTIVE: To determine the role of LHCGR in transient, pregnancy-induced CS. DESIGN SETTING PATIENT AND INTERVENTION: We investigated the functional implications of LHCGRs in a patient presenting, at a tertiary referral center, with repeated pregnancy-induced CS with bilateral adrenal hyperplasia, resolving after parturition. MAIN OUTCOME MEASURES AND RESULTS: Acute testing for aberrant hormone receptors was negative except for arginine vasopressin (AVP)-increased cortisol secretion. Long-term hCG stimulation induced hypercortisolism, which was unsuppressed by dexamethasone. Postadrenalectomy histopathology demonstrated steroidogenically active adrenocortical hyperplasia and ectopic cortical cell clusters in the medulla. Quantitative polymerase chain reaction showed upregulated expression of LHCGR, transcription factors GATA4, ZFPM2, and proopiomelanocortin (POMC), AVP receptors (AVPRs) AVPR1A and AVPR2, and downregulated melanocortin 2 receptor (MC2R) vs control adrenals. LHCGR was localized in subcapsular, zona glomerulosa, and hyperplastic cells. Single adrenocorticotropic hormone-positive medullary cells were demonstrated in the zona reticularis. The role of adrenal adrenocorticotropic hormone was considered negligible due to downregulated MC2R. Coexpression of CYP11B1/CYP11B2 and AVPR1A/AVPR2 was observed in ectopic cortical cells in the medulla. hCG stimulation of the patient's adrenal cell cultures significantly increased cyclic adenosine monophosphate, corticosterone, 11-deoxycortisol, cortisol, and androstenedione production. CTNNB1, PRKAR1A, ARMC5, and PRKACA gene mutational analyses were negative. CONCLUSION: Nongenetic, transient, somatic mutation-independent, pregnancy-induced CS was due to hCG-stimulated transformation of LHCGR-positive undifferentiated subcapsular cells (presumably adrenocortical progenitors) into LHCGR-positive hyperplastic cortical cells. These cells respond to hCG stimulation with cortisol secretion. Without the ligand, they persist with aberrant LHCGR expression and the ability to respond to the same stimulus.

14.
Cell Physiol Biochem ; 43(3): 1064-1076, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28977799

RESUMEN

BACKGROUND/AIMS: Physiological role of luteinizing hormone (LH) and its receptor (LHCGR) in adrenal remains unknown. In inhibin-α/Simian Virus 40 T antigen (SV40Tag) (inhα/Tag) mice, gonadectomy-induced (OVX) elevated LH triggers the growth of transcription factor GATA4 (GATA4)-positive adrenocortical tumors in a hyperplasia-adenoma-adenocarcinoma sequence. METHODS: We investigated the role of LHCGR in tumor induction, by crossbreeding inhα/Tag with Lhcgr knockout (LuRKO) mice. By knocking out Lhcgr and Gata4 in Cα1 adrenocortical cells (Lhcgr-ko, Gata4-ko) we tested their role in tumor progression. RESULTS: Adrenal tumors of OVX inhα/Tag mice develop from the hyperplastic cells localized in the topmost layer of zona fasciculata. OVX inhα/Tag/LuRKO only developed SV40Tag positive hyperplastic cells that were GATA4 negative, cleaved caspase-3 positive and did not progress into adenoma. In contrast to Lhcgr-ko, Gata4-ko Cα1 cells presented decreased proliferation, increased apoptosis, decreased expression of Inha, SV40Tag and Lhcgr tumor markers, as well as up-regulated adrenal- and down-regulated sex steroid gene expression. Both Gata4-ko and Lhcgr-ko Cα1 cells had decreased expression of steroidogenic genes resulting in decreased basal progesterone production. CONCLUSION: Our data indicate that LH/LHCGR signaling is critical for the adrenal cell reprogramming by GATA4 induction prompting adenoma formation and gonadal-like phenotype of the adrenocortical tumors in inhα/Tag mice.


Asunto(s)
Neoplasias de la Corteza Suprarrenal/patología , Factor de Transcripción GATA4/metabolismo , Hormona Luteinizante/metabolismo , Neoplasias de la Corteza Suprarrenal/etiología , Neoplasias de la Corteza Suprarrenal/metabolismo , Glándulas Suprarrenales/metabolismo , Glándulas Suprarrenales/patología , Animales , Antígenos Transformadores de Poliomavirus/genética , Antígenos Transformadores de Poliomavirus/metabolismo , Apoptosis , Sistemas CRISPR-Cas/genética , Caspasa 3/metabolismo , Proliferación Celular , Transformación Celular Neoplásica , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Regulación hacia Abajo , Femenino , Fluoroinmunoensayo , Factor de Transcripción GATA4/deficiencia , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA6/metabolismo , Gónadas/cirugía , Inhibinas/genética , Inhibinas/metabolismo , Hormona Luteinizante/sangre , Ratones , Ratones Noqueados , Ratones Transgénicos , Fenotipo , Fosfoproteínas/metabolismo , Receptores de HL/deficiencia , Receptores de HL/genética , Factor Esteroidogénico 1/metabolismo
15.
Cell Physiol Biochem ; 43(2): 670-684, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28942439

RESUMEN

BACKGROUND/AIMS: The effect of impaired intracellular proline availability for proline dehydrogenase/proline oxidase (PRODH/POX)-dependent apoptosis was studied. METHODS: We generated a constitutively knocked-down PRODH/POX MCF-7 breast cancer cell line (MCF-7shPRODH/POX) as a model to analyze the functional consequences of impaired intracellular proline levels. We have used inhibitor of proline utilization in collagen biosynthesis, 2-metoxyestradiol (MOE), inhibitor of prolidase that generate proline, rapamycin (Rap) and glycyl-proline (GlyPro), substrate for prolidase. Collagen and DNA biosynthesis were evaluated by radiometric assays. Cell viability was determined using Nucleo-Counter NC-3000. The activity of prolidase was determined by colorimetric assay. Expression of proteins was assessed by Western blot and immunofluorescence bioimaging. Concentration of proline was analyzed by liquid chromatography with mass spectrometry. RESULTS: PRODH/POX knockdown decreased DNA and collagen biosynthesis, whereas increased prolidase activity and intracellular proline level in MCF-7shPRODH/POX cells. All studied compounds decreased cell viability in MCF-7 and MCF-7shPRODH/POX cells. DNA biosynthesis was similarly inhibited by Rap and MOE in both cell lines, but GlyPro inhibited the process only in MCF-7shPRODH/POX and MOE+GlyPro only in MCF-7 cells. All the compounds inhibited collagen biosynthesis, increased prolidase activity and cytoplasmic proline level in MCF-7shPRODH/POX cells and contributed to the induction of pro-survival mode only in MCF-7shPRODH/POX cells. In contrast, all studied compounds upregulated expression of pro-apoptotic protein only in MCF-7 cells. CONCLUSION: PRODH/POX was confirmed as a driver of apoptosis and proved the eligibility of MCF-7shPRODH/POX cell line as a highly effective model to elucidate the different mechanisms underlying proline utilization or generation in PRODH/POX-dependent pro-apoptotic pathways.


Asunto(s)
Apoptosis , Prolina Oxidasa/metabolismo , Prolina/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Técnicas de Cultivo de Célula , Proliferación Celular , Supervivencia Celular , Colágeno/metabolismo , Femenino , Humanos , Células MCF-7 , Prolina Oxidasa/genética , Interferencia de ARN , ARN Interferente Pequeño/genética
16.
Mol Cell Endocrinol ; 444: 9-18, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28131743

RESUMEN

Specific inbred strains and transgenic inhibin-α Simian Virus 40 T antigen (inhα/Tag) mice are genetically susceptible to gonadectomy-induced adrenocortical neoplasias. We identified altered gene expression in prepubertally gonadectomized (GDX) inhα/Tag and wild-type (WT) mice. Besides earlier reported Gata4 and Lhcgr, we found up-regulated Esr1, Prlr-rs1, and down-regulated Grb10, Mmp24, Sgcd, Rerg, Gnas, Nfatc2, Gnrhr, Igf2 in inhα/Tag adrenal tumors. Sex-steroidogenic enzyme genes expression (Srd5a1, Cyp19a1) was up-regulated in tumors, but adrenal-specific steroidogenic enzyme (Cyp21a1, Cyp11b1, Cyp11b2) down-regulated. We localized novel Lhcgr transcripts in adrenal cortex parenchyma and in non-steroidogenic A cells, in GDX WT and in intact WT mice. We identified up-regulated Esr1 as a potential novel biomarker of gonadectomy-induced adrenocortical tumors in inhα/Tag mice presenting with an inverted adrenal-to-gonadal steroidogenic gene expression profile. A putative normal adrenal remodeling or tumor suppressor role of the down-regulated genes (e.g. Grb10, Rerg, Gnas, and Nfatc2) in the tumors remains to be addressed.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales/genética , Genes Relacionados con las Neoplasias , Gonadotropinas/farmacología , Animales , Biomarcadores de Tumor/metabolismo , Factores de Transcripción GATA/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reproducibilidad de los Resultados , Esteroides/biosíntesis
17.
Sci Rep ; 6: 37095, 2016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27848975

RESUMEN

Expression of follicle-stimulation hormone receptor (FSHR) is confined to gonads and at low levels to some extragonadal tissues like human umbilical vein endothelial cells (HUVEC). FSH-FSHR signaling was shown to promote HUVEC angiogenesis and thereafter suggested to have an influential role in pregnancy. We revisited hereby the expression and functionality of FSHR in HUVECs angiogenesis, and were unable to reproduce the FSHR expression in human umbilical cord, HUVECs or immortalized HUVECs (HUV-ST). Positive controls as granulosa cells and HEK293 cells stably transfected with human FSHR cDNA expressed FSHR signal. In contrast to positive control VEGF, FSH treatment showed no effects on tube formation, nitric oxide production, wound healing or cell proliferation in HUVEC/HUV-ST. Thus, it remains open whether the FSH-FSHR activation has a direct regulatory role in the angiogenesis of HUVECs.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Hormona Folículo Estimulante/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Receptores de HFE/biosíntesis , Femenino , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Embarazo , Receptores de HFE/genética
18.
J Clin Endocrinol Metab ; 101(7): 2905-14, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27224263

RESUMEN

CONTEXT: FSH receptor (FSHR), besides being expressed in gonads, is also expressed in some extragonadal tissues at low levels. OBJECTIVE: We examined the functional expression of FSHR in different types of endometriotic lesions. DESIGN: Extensive studies were carried out to detect functional FSHR expression and FSH-stimulated estrogen production in ovarian endometriomas and recto-vaginal endometriotic nodules (RVEN). Normal endometrium, ovary, and myometrium tissues from nonpregnant cycling women served as controls. SETTINGS: This laboratory-based study was carried out on tissue specimens from patients with endometriosis and healthy donors. RESULTS: Endometriotic lesions and normal secretory-phase endometrium showed FSHR expression at both mRNA and protein level. RVEN and ovarian endometrioma demonstrated up-regulated CYP19A1, dependent on the activation of CYP19A1 proximal promoter II. Estrogen receptor-ß (ESR2) expression was significantly increased in RVEN vs normal endometrium. Recombinant human FSH stimulation of RVEN explants significantly increased estradiol production and CYP19A1 and ESR2 expression. FSHR was up-regulated in recombinant human FSH-stimulated endometrial and decidualized stromal cells with increased CYP19A1 expression. CONCLUSIONS: We described a novel functional FSHR expression, where FSH-stimulated CYP19A1 expression and estrogen production in RVEN are demonstrated. This locally FSH-induced estrogen production may contribute to the pathology, development, progression, and severity of RVEN.


Asunto(s)
Aromatasa/genética , Endometriosis/genética , Endometrio/metabolismo , Receptores de HFE/genética , Enfermedades del Recto/genética , Enfermedades Vaginales/genética , Adulto , Aromatasa/metabolismo , Estudios de Casos y Controles , Endometriosis/patología , Endometrio/efectos de los fármacos , Endometrio/patología , Estradiol/metabolismo , Receptor beta de Estrógeno/fisiología , Femenino , Hormona Folículo Estimulante/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Enfermedades del Ovario/genética , Enfermedades del Ovario/patología , Regiones Promotoras Genéticas/efectos de los fármacos , Receptores de HFE/metabolismo , Enfermedades del Recto/patología , Enfermedades Vaginales/patología , Adulto Joven
19.
Cell Physiol Biochem ; 35(5): 1729-43, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25832132

RESUMEN

BACKGROUND: In comparison to short-term gonad heat exposure, little is known about the molecular mechanisms that regulate testicular steroidogenesis during long-term whole body heat acclimation. MATERIAL AND METHODS: Testicular slices from neonatal (NHA) and adult (AHA) heat-acclimated Wistar rats were analysed in vitro to assess the mRNA expression and enzymatic activity of steroidogenic enzymes under basal and luteinising hormone (LH) or prolactin (PRL) stimulated conditions compared with control rats (CR). Furthermore, a de-acclimated group (DA) was created by transferring adult NHA rats to control conditions. RESULTS: Heat acclimation significantly increased plasma LH levels in the AHA group and LH and PRL in the NHA group compared with the CR group; however, after heat acclimation, the T and E2 levels did not differ from the control levels. All heat-acclimated groups showed high basal intra-testicular steroid production in vitro. Moreover, basal Cyp11a1 and Hsd3b1 levels were upregulated in vitro in the NHA and DA groups versus the CR group. LH in vitro stimulation upregulated Cyp11a1 expression in the NHA and AHA groups and PRL stimulation upregulated Cyp17a1 levels in the NHA and DA groups compared with the basal expression levels. In the AHA group, decreased basal Star and CYP11A activities but increased HSD3B1 and CYP17A1 activities were found. CONCLUSION: Our data revealed that despite the similar steroid levels in plasma and secreted in vitro by neonatal and adult heat-acclimated rat testicular slices, the molecular mechanisms underlying the steroidogenic response to heat acclimation during these different developmental stages were distinct.


Asunto(s)
Testículo/metabolismo , Animales , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Hormona Luteinizante/sangre , Hormona Luteinizante/farmacología , Masculino , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Progesterona Reductasa/genética , Progesterona Reductasa/metabolismo , Prolactina/sangre , Prolactina/farmacología , Radioinmunoensayo , Ratas , Ratas Wistar , Temperatura , Testosterona/sangre , Regulación hacia Arriba/efectos de los fármacos
20.
Reprod Biol ; 14(1): 25-31, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24607252

RESUMEN

Granulosa cell tumors are rare, 3-7.6% of primary ovarian tumors, although with poor prognosis as the tumor-related mortality rate is 37.3%, with 80% of deaths occurring on recurrence. We have created a transgenic (TG) murine model for gonadal somatic cell tumors by expressing the powerful viral oncogene, Simian Virus 40 T-antigen (Tag), under the regulation of murine inhibin α-subunit 6 kb promoter (inhα/Tag). Gonadotropin dependent ovarian granulosa cell tumors were formed in females by the age of 5-6 months, with a 100% penetrance. We have successfully used the inhα/Tag model to test different treatment strategies for ovarian tumors. With a gene therapy trial in inhα/Tag mice crossbred with inhα/HSV-TK (herpes simplex virus thymidine kinase) mice (double TG), we proved the principle that targeted expression of HSV-TK gene in gonadal somatic cell tumors enabled tumor ablation by anti-herpes treatment. When we aimed at targeted destruction of luteinizing hormone/chorionic gonadotropin receptor (LHCGR) expressing inhα/Tag tumor cells in vivo by a lytic peptide Hecate-CGß conjugate, we could successfully kill the tumor cells, sparing the normal cells. We recently found high zona pellucida glycoprotein 3 (ZP3) expression in inhα/Tag granulosa cell tumors, as well as in human granulosa cell tumors. We tested the concept of treating the ovarian tumors of inhα/Tag mice by vaccination against the ectopically expressed ZP3. Immunotherapy with recombinant human (rh) ZP3 was highly successful with no objective side effects in inhα/Tag females, suggesting rhZP3 immunization as a novel strategy for the immunotherapy of ovarian granulosa cell tumors.


Asunto(s)
Tumor de Células de la Granulosa/terapia , Inhibinas/genética , Neoplasias Ováricas/terapia , Regiones Promotoras Genéticas , Animales , Antígenos Virales de Tumores/genética , Antígenos Virales de Tumores/metabolismo , Modelos Animales de Enfermedad , Femenino , Tumor de Células de la Granulosa/genética , Tumor de Células de la Granulosa/metabolismo , Ratones , Ratones Transgénicos , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Virus 40 de los Simios/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA