Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PNAS Nexus ; 3(2): pgae008, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38390215

RESUMEN

Linking individual and stand-level dynamics during forest development reveals a scaling relationship between mean tree size and tree density in forest stands, which integrates forest structure and function. However, the nature of this so-called scaling law and its variation across broad spatial scales remain unquantified, and its linkage with forest demographic processes and carbon dynamics remains elusive. In this study, we develop a theoretical framework and compile a broad-scale dataset of long-term sample forest stands (n = 1,433) from largely undisturbed forests to examine the association of temporal mean tree size vs. density scaling trajectories (slopes) with biomass accumulation rates and the sensitivity of scaling slopes to environmental and demographic drivers. The results empirically demonstrate a large variation of scaling slopes, ranging from -4 to -0.2, across forest stands in tropical, temperate, and boreal forest biomes. Steeper scaling slopes are associated with higher rates of biomass accumulation, resulting from a lower offset of forest growth by biomass loss from mortality. In North America, scaling slopes are positively correlated with forest stand age and rainfall seasonality, thus suggesting a higher rate of biomass accumulation in younger forests with lower rainfall seasonality. These results demonstrate the strong association of the transient mean tree size vs. density scaling trajectories with forest demography and biomass accumulation rates, thus highlighting the potential of leveraging forest structure properties to predict forest demography, carbon fluxes, and dynamics at broad spatial scales.

2.
Ecology ; 105(1): e4189, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37877169

RESUMEN

Root-centric studies have revealed fast taxonomic turnover across root neighborhoods, but how such turnover is accompanied by changes in species functions and phylogeny (i.e., ß diversity) remains largely unknown. As ß diversity can reflect the degree of community-wide biotic homogenization, such information is crucial for better inference of below-ground assembly rules, community structuring, and ecosystem processes. We collected 2480 root segments from 625 0-30 cm soil profiles in a subtropical forest in China. Root segments were identified into 138 species with DNA-barcoding with six root morphological and architectural traits measured per species. By using the mean pairwise (Dpw ) and mean nearest neighbor distance (Dnn ) to quantify species ecological differences, we first tested the non-random functional and phylogenetic turnover of root neighborhoods that would lend more support to deterministic over stochastic community assembly processes. Additionally, we examined the distance-decay pattern of ß diversity, and finally partitioned ß diversity into geographical and environmental components to infer their potential drivers of environmental filtering, dispersal limitation, and biotic interactions. We found that functional turnover was often lower than expected given the taxonomic turnover, whereas phylogenetic turnover was often higher than expected. Phylogenetic Dpw (e.g., interfamily species) turnover exhibited a distance-decay pattern, likely reflecting limited dispersal or abiotic filtering that leads to the spatial aggregation of specific plant lineages. Conversely, both functional and phylogenetic Dnn (e.g., intrageneric species) exhibited an inverted distance-decay pattern, likely reflecting strong biotic interactions among spatially and phylogenetically close species leading to phylogenetic and functional divergence. While the spatial distance was generally a better predictor of ß diversity than environmental distance, the joint effect of environmental and spatial distance usually overrode their respective pure effects. These findings suggest that root neighborhood functional homogeneity may somewhat increase forest resilience after disturbance by exhibiting an insurance effect. Likewise, root neighborhood phylogenetic heterogeneity may enhance plant fitness by hindering the transmission of host-specific pathogens through root networks or by promoting interspecific niche complementarity not captured by species functions. Our study highlights the potential role of root-centric ß diversity in mediating community structures and functions largely ignored in previous studies.


Asunto(s)
Biodiversidad , Ecosistema , Filogenia , Bosques , Suelo , Plantas
4.
Commun Biol ; 6(1): 1066, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857800

RESUMEN

One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species. We further tested for conmycorrhizal density dependence (CMDD) to test for benefit from shared mutualists. We found that the strength of CDD varies systematically with mycorrhizal type, with ectomycorrhizal tree species exhibiting higher sapling densities with increasing adult densities than arbuscular mycorrhizal tree species. Moreover, we found evidence of positive CMDD for tree species of both mycorrhizal types. Collectively, these findings indicate that mycorrhizal interactions likely play a foundational role in global forest diversity patterns and structure.


Asunto(s)
Micorrizas , Retroalimentación , Simbiosis , Plantas/microbiología , Suelo
5.
Ecology ; 104(11): e4172, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37768319

RESUMEN

Intransitive competition has long been acknowledged as a potential mechanism favoring species coexistence. However, its prevalence, variance along environmental gradients, and possible underlying mechanisms (trade-offs) in plant communities (especially in forests) has seldom been examined. A recently developed "reverse-engineering" approach based on Markov Chain allowed us to estimate the competitive transition matrices and competitive intransitivity from observational abundance data. Using this approach, we estimated competitive intransitivity of five dominant species in a subtropical forest and then related it to soil fertility (soil organic matter and soil pH) and demographic trade-offs (growth-survival and stature-recruitment trade-offs). In our forest plot, intransitive competition was common among the dominant species and peaked at the intermediate level of soil organic matter. Neither the growth-survival trade-off nor the stature-recruitment trade-off was positively related to competitive intransitivity. Our study for the first time empirically supported the unimodal intransitivity-fertility relationship in forests, which, however, was not mediated by the two demographic trade-offs in our plot.


Asunto(s)
Bosques , Modelos Biológicos , Plantas , Suelo , Demografía
6.
Am J Bot ; 110(10): e16227, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37561668

RESUMEN

PREMISE: The ever-increasing temperatures of the Anthropocene may facilitate plant invasions. To date, studies of temperature effects on alien plants have mainly focused on aboveground plant traits but ignored belowground traits, which may confound predictions of plant invasion risks. METHODS: The temperature effects on the root growth dynamics of two alien shrubs, invasive Mimosa sepiaria and naturalized Corchorus capsulari, were studied using a 3D, transparent growth system under five temperature treatments (day/night: 18°C/13°C to 34°C/29°C) that cover the present and future warming temperature scenarios in China. We measured root depth and width growth in response to temperature treatments over 84 days. We also investigated intra- and interspecific competition of paired plants of the two species grown together at the five temperatures. RESULTS: Shoot growth of M. sepiaria and C. capsularis was optimal at the mid-range temperature. Root growth, however, was faster at the highest temperature (34°C/29°C) for M. sepiaria, but decreased for C. capsularis as temperatures increased. Root depth growth was more sensitive than root width for both species during neighbor competition. Compared to C. capsularis, M. sepiaria had relatively greater advantage during intra- and interspecific competition with increasing temperature, possibly because of its better root growth at high temperatures. CONCLUSIONS: These results suggest that temperature increases can improve the performance of some alien plants by facilitating width and depth growth of their roots. This enhancement requires serious attention when managing and predicting invasion risk.


Asunto(s)
Plantas , Temperatura , China
7.
New Phytol ; 240(4): 1534-1547, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37649282

RESUMEN

Predicting and managing the structure and function of plant microbiomes requires quantitative understanding of community assembly and predictive models of spatial distributions at broad geographic scales. Here, we quantified the relative contribution of abiotic and biotic factors to the assembly of phyllosphere bacterial communities, and developed spatial distribution models for keystone bacterial taxa along a latitudinal gradient, by analyzing 16S rRNA gene sequences from 1453 leaf samples taken from 329 plant species in China. We demonstrated a latitudinal gradient in phyllosphere bacterial diversity and community composition, which was mostly explained by climate and host plant factors. We found that host-related factors were increasingly important in explaining bacterial assembly at higher latitudes while nonhost factors including abiotic environments, spatial proximity and plant neighbors were more important at lower latitudes. We further showed that local plant-bacteria associations were interconnected by hub bacteria taxa to form metacommunity-level networks, and the spatial distribution of these hub taxa was controlled by hosts and spatial factors with varying importance across latitudes. For the first time, we documented a latitude-dependent importance in the driving factors of phyllosphere bacteria assembly and distribution, serving as a baseline for predicting future changes in plant phyllosphere microbiomes under global change and human activities.


Asunto(s)
Bacterias , Microbiota , Humanos , ARN Ribosómico 16S/genética , Bacterias/genética , Plantas/genética , Hojas de la Planta/microbiología
8.
Trends Ecol Evol ; 38(11): 1085-1096, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37468343

RESUMEN

Advances in restoration ecology are needed to guide ecological restoration in a variable and changing world. Coexistence theory provides a framework for how variability in environmental conditions and species interactions affects species success. Here, we conceptually link coexistence theory and restoration ecology. First, including low-density growth rates (LDGRs), a classic metric of coexistence, can improve abundance-based restoration goals, because abundances are sensitive to initial treatments and ongoing variability. Second, growth-rate partitioning, developed to identify coexistence mechanisms, can improve restoration practice by informing site selection and indicating necessary interventions (e.g., site amelioration or competitor removal). Finally, coexistence methods can improve restoration assessment, because initial growth rates indicate trajectories, average growth rates measure success, and growth partitioning highlights interventions needed in future.


Asunto(s)
Ecosistema , Modelos Biológicos , Ecología
9.
Front Microbiol ; 14: 1147285, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007520

RESUMEN

Microorganisms can influence plant growth and health, ecosystem functioning, and stability. Community and network structures of mangrove phyllosphere fungi have rarely been studied although mangroves have very important ecological and economical values. Here, we used high throughput sequencing of the internal transcribed spacer 2 (ITS2) to assess epiphytic and endophytic phyllosphere fungal communities of six true mangrove species and five mangrove associates. Totally, we obtained 1,391 fungal operational taxonomic units (OTUs), including 596 specific epiphytic fungi, 600 specific endophytic fungi, and 195 shared fungi. The richness and community composition differed significantly for epiphytes and endophytes. Phylogeny of the host plant had a significant constraint on epiphytes but not endophytes. Network analyses showed that plant-epiphyte and plant-endophyte networks exhibited strong specialization and modularity but low connectance and anti-nestedness. Compared to plant-endophyte network, plant-epiphyte network showed stronger specialization, modularity, and robustness but lower connectance and anti-nestedness. These differences in community and network structures of epiphytes and endophytes may be caused by spatial niche partitioning, indicating their underlying ecological and environmental drivers are inconsistent. We highlight the important role of plant phylogeny in the assembly of epiphytic but not endophytic fungal communities in mangrove ecosystems.

10.
Am J Bot ; 110(4): e16153, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36905311

RESUMEN

PREMISE: Dioecious trees are important components of many forest ecosystems. Outbreeding advantage and sexual dimorphism are two major mechanisms that explain the persistence of dioecious plants; however, they have rarely been studied in dioecious trees. METHODS: We investigated the influence of sex and genetic distance between parental trees (GDPT) on the growth and functional traits of multiple seedlings of a dioecious tree, Diospyros morrisiana. RESULTS: We found significant positive relationships between GDPT and seedling sizes and tissue density. However, the positive outbreeding effects on seedling growth mainly manifested in female seedlings, but were not prominent in males. Among seedlings, the male ones generally had higher biomass and leaf area than female seedlings, but such differences diminished as GDPT increased. CONCLUSIONS: Our research highlights that outbreeding advantage in plants can be sex-specific and that sexual dimorphism begins from the seedling stage of dioecious trees.


Asunto(s)
Plantones , Árboles , Animales , Ecosistema , Caracteres Sexuales , Hojas de la Planta
11.
Am J Bot ; 110(2): e16124, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36652334

RESUMEN

PREMISE: Understanding the drivers of the growth in long-lived woody trees is the key to predicting their responses to and maintaining their populations under global change. However, the role of tree sex and differential investment to reproduction are often not considered in models of individual tree growth, despite many gymnosperm and angiosperm species having separate male and female sexes. Thus, better models of tree growth should include tree sex and life stage along with the abiotic and biotic neighborhoods. METHODS: We used a sex-specific molecular marker to determine the sex of 2188 individual trees >1 cm DBH of the dioecious tree species Diospyros morrisiana in a 50-ha subtropical forest plot in China. We used long-term census data from about 300,000 trees, together with 625 soil samples and 2352 hemispherical photographs to characterize the spatially explicit biotic and abiotic neighborhoods. RESULTS: We found a male-biased effective sex ratio and a female-biased overall population sex ratio of D. morrisiana. No sex spatial segregation was detected for the overall population, mature, or immature trees. Immature trees grew faster than mature trees and females grew slower than males. Further, conspecific neighbors significantly decreased tree growth, while the abiotic neighborhood showed no significant effect. CONCLUSIONS: Our findings suggest that variation in resource allocation patterns within and across individual trees of different sexes and life-history stages should be more widely accounted for in models of tree growth. In addition, our study highlights the importance of sex-specific molecular markers for studying populations of long-lived dioecious tree species.


Asunto(s)
Diospyros , Árboles , Árboles/fisiología , Bosques , Madera , Razón de Masculinidad
12.
Ecology ; 104(2): e3923, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36428233

RESUMEN

Plant recruitment interactions (i.e., what recruits under what) shape the composition, diversity, and structure of plant communities. Despite the huge body of knowledge on the mechanisms underlying recruitment interactions among species, we still know little about the structure of the recruitment networks emerging in ecological communities. Modeling and analyzing the community-level structure of plant recruitment interactions as a complex network can provide relevant information on ecological and evolutionary processes acting both at the species and ecosystem levels. We report a data set containing 143 plant recruitment networks in 23 countries across five continents, including temperate and tropical ecosystems. Each network identifies the species under which another species recruits. All networks report the number of recruits (i.e., individuals) per species. The data set includes >850,000 recruiting individuals involved in 118,411 paired interactions among 3318 vascular plant species across the globe. The cover of canopy species and open ground is also provided. Three sampling protocols were used: (1) The Recruitment Network (RN) protocol (106 networks) focuses on interactions among established plants ("canopy species") and plants in their early stages of recruitment ("recruit species"). A series of plots was delimited within a locality, and all the individuals recruiting and their canopy species were identified; (2) The paired Canopy-Open (pCO) protocol (26 networks) consists in locating a potential canopy plant and identifying recruiting individuals under the canopy and in a nearby open space of the same area; (3) The Georeferenced plot (GP) protocol (11 networks) consists in using information from georeferenced individual plants in large plots to infer canopy-recruit interactions. Some networks incorporate data for both herbs and woody species, whereas others focus exclusively on woody species. The location of each study site, geographical coordinates, country, locality, responsible author, sampling dates, sampling method, and life habits of both canopy and recruit species are provided. This database will allow researchers to test ecological, biogeographical, and evolutionary hypotheses related to plant recruitment interactions. There are no copyright restrictions on the data set; please cite this data paper when using these data in publications.


Asunto(s)
Ecosistema , Tracheophyta , Humanos , Plantas , Evolución Biológica
13.
Environ Int ; 168: 107480, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36007300

RESUMEN

The potential patterns and processes of ecosystem multifunctionality (EMF) across global ecosystems are largely unknown, which limits our understanding of how ecosystems respond to drivers. Here we compile a global dataset that consists of 973 unique sites across the forest, grassland, and shrub ecosystems. We identify a critical global pattern of hump-shaped EMF relationship with mean annual precipitation at a threshold of ∼671 mm, where low and high precipitation patterns are discriminated. We find that climatic and soil factors jointly drive the EMF in low precipitation areas, and climatic factors dominate the EMF in high precipitation regions. However, when comparing across the three dominant ecosystems and precipitation regions, the key driver in EMF differs substantially. Specifically, climatic and soil factors dominate the EMF of low and high precipitation regions across forest ecosystems, respectively. Climatic drivers dominate the EMF under different precipitation conditions across grassland and shrub ecosystems. Overall, our findings highlight the importance of climatic and soil drivers on EMF, which should be considered in ecosystem stability models in response to global climate and land-use change scenarios.

14.
Sci Adv ; 8(18): eabn3368, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35507655

RESUMEN

Ecosystem functions are threatened by both recurrent droughts and declines in biodiversity at a global scale, but the drought dependency of diversity-productivity relationships remains poorly understood. Here, we use a two-phase mesocosm experiment with simulated drought and model oldfield communities (360 experimental mesocosms/plant communities) to examine drought-induced changes in soil microbial communities along a plant species richness gradient and to assess interactions between past drought (soil legacies) and subsequent drought on plant diversity-productivity relationships. We show that (i) drought decreases bacterial and fungal richness and modifies relationships between plant species richness and microbial groups; (ii) drought soil legacy increases net biodiversity effects, but responses of net biodiversity effects to plant species richness are unaffected; and (iii) linkages between plant species richness and complementarity/selection effects vary depending on past and subsequent drought. These results provide mechanistic insight into biodiversity-productivity relationships in a changing environment, with implications for the stability of ecosystem function under climate change.

15.
Ecology ; 103(7): e3703, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35357001

RESUMEN

A foundational assumption of trait-based ecology is that individual performances should be predicted by its functional traits. However, the trait-performance relationships reported in literature were typically weak, probably due to the ignorance of interactions between traits and environments, intraspecific trait variability, and hard traits (directly linked to physiological processes of interest). We conducted an experiment of planting 900 seedlings of six tree species separately (one seedling per pot) along experimentally manipulated light and water gradients, monitored their survival and growth, and measured their morphological, photosynthetic, and hydraulic traits. Most trait-performance relationships depended on the environments, either marginally changing (weak trait × environment interaction) or even reversing (strong trait × environment interaction) along light or water gradients in our experiment. Such trait × environment interactions were more likely to be detected in growth models using individual-level traits than models using species mean traits, but seedling growth was not better modeled with individual-level traits than species mean traits. Additionally, none of the hard traits (photosynthetic and hydraulic traits) were better predictors than soft traits (morphological traits) modeling seedling growth and survival along light and water gradients. Our study highlights the necessities of considering trait × environment interactions when predicting response of plants to changing environments. The benefits of using individual-level traits or hard traits to predict plant performance might be reduced or even canceled if their measurement errors are not well controlled.


Asunto(s)
Plantones , Árboles , Fenotipo , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Plantas , Plantones/fisiología , Agua
16.
Ecol Lett ; 25(5): 1263-1276, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35106910

RESUMEN

Modelling species interactions in diverse communities traditionally requires a prohibitively large number of species-interaction coefficients, especially when considering environmental dependence of parameters. We implemented Bayesian variable selection via sparsity-inducing priors on non-linear species abundance models to determine which species interactions should be retained and which can be represented as an average heterospecific interaction term, reducing the number of model parameters. We evaluated model performance using simulated communities, computing out-of-sample predictive accuracy and parameter recovery across different input sample sizes. We applied our method to a diverse empirical community, allowing us to disentangle the direct role of environmental gradients on species' intrinsic growth rates from indirect effects via competitive interactions. We also identified a few neighbouring species from the diverse community that had non-generic interactions with our focal species. This sparse modelling approach facilitates exploration of species interactions in diverse communities while maintaining a manageable number of parameters.


Asunto(s)
Teorema de Bayes , Ecología
17.
Ann Bot ; 129(5): 583-592, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35136940

RESUMEN

BACKGROUND AND AIMS: Nitrogen is often regarded as a limiting factor to plant growth in various ecosystems. Understanding how nitrogen drives plant growth has numerous theoretical and practical applications in agriculture and ecology. In 2004, Göran I. Ågren proposed a mechanistic model of plant growth from a biochemical perspective. However, neglecting respiration and assuming stable and balanced growth made the model unrealistic for plants growing in natural conditions. The aim of the present paper is to extend Ågren's model to overcome these limitations. METHODS: We improved Ågren's model by incorporating the respiratory process and replacing the stable and balanced growth assumption with a three-parameter power function to describe the relationship between nitrogen concentration (Nc) and biomass. The new model was evaluated based on published data from three studies on corn (Zea mays) growth. KEY RESULTS: Remarkably, the mechanistic growth model derived in this study is mathematically equivalent to the classical Richards model, which is the most widely used empirical growth model. The model agrees well with empirical plant growth data. CONCLUSIONS: Our model provides a mechanistic interpretation of how nitrogen drives plant growth. It is very robust in predicting growth curves and the relationship between Nc and relative growth rate.


Asunto(s)
Ecosistema , Nitrógeno , Biomasa , Desarrollo de la Planta , Plantas , Zea mays
18.
Sci Total Environ ; 808: 152197, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-34890654

RESUMEN

Quantifying the spatial variation and drivers of microbe-driven soil carbon (C) decomposition (also called soil microbial respiration, MR) and its temperature sensitivity (Q10) is crucial for reducing the uncertainty in modelling the terrestrial C cycle under global warming. To this end, most previous studies sampled soils from multiple sites at regional scales and incubated them at the same temperature level in the laboratory. However, this unified incubation temperature is too warm to the cold sites, and too cold to the warm sites, thus causing a large bias in the MR and Q10 estimations. Here, we conducted fine scale intensive sampling (194 soil samples) and measurements within a 4-ha subtropical forest plot to examine the underlying mechanisms driving the spatial pattern of MR and Q10. Our results showed that both MR and Q10 varied spatially within subtropical forests. The fine scale variation of MR was dominated by soil nitrogen concentration and slope position, and Q10 was dominated by soil fungi abundance. Overall, the 35 investigated biotic and abiotic factors explained 38% of the spatial variation of MR and 9% of the spatial variation of Q10 in the subtropical forest. This suggests that the fine scale variation of soil C dynamics is much more complex than that at the regional scale reported in previous studies, which should be considered in the assessments of terrestrial soil C cycles.


Asunto(s)
Microbiología del Suelo , Suelo , Carbono/análisis , Ciclo del Carbono , China , Bosques , Temperatura
19.
Front Microbiol ; 12: 719725, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34790175

RESUMEN

A tight association between microbial function and taxonomy is the basis of functional prediction based on taxonomy, but such associations have been controversial in water biomes largely due to the probable prevalence of functional redundancy. However, previous studies on this topic used a relatively coarse resolution of ecosystem functioning, potentially inflating the estimated functional redundancy. Thus, a comprehensive evaluation of the association between high-resolution functional traits and taxonomic diversity obtained from fresh and saline water metagenomic data is urgently needed. Here, we examined 938 functionally and taxonomically annotated water metagenomes obtained worldwide to scrutinize the connection between function and taxonomy, and to identify the key driver of water metagenomes function or taxonomic composition at a global scale. We found that pairwise similarity of function was significantly associated with taxonomy, though taxonomy had higher global dissimilarity than function. Classification into six water biomes resulted in greater variation in taxonomic compositions than functional profiles, as the key regulating factor was salinity. Fresh water microbes harbored distinct functional and taxonomic structures from microbes in saline water biomes, despite that taxonomy was more susceptible to gradient of geography and climate than function. In summary, our results find a significant relationship between taxonomic diversity and microbial functioning in global water metagenomes, although microbial taxonomic compositions vary to a larger extent than functional profiles in aquatic ecosystems, suggesting the possibility and necessity for functional prediction of microorganisms based on taxonomy in global aquatic ecosystems.

20.
Front Microbiol ; 12: 716764, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34690962

RESUMEN

Anthropogenic disturbances and global climate change are causing large-scale biodiversity loss and threatening ecosystem functions. However, due to the lack of knowledge on microbial species loss, our understanding on how functional profiles of soil microbes respond to diversity decline is still limited. Here, we evaluated the biotic homogenization of global soil metagenomic data to examine whether microbial functional structure is resilient to significant diversity reduction. Our results showed that although biodiversity loss caused a decrease in taxonomic species by 72%, the changes in the relative abundance of diverse functional categories were limited. The stability of functional structures associated with microbial species richness decline in terrestrial systems suggests a decoupling of taxonomy and function. The changes in functional profile with biodiversity loss were function-specific, with broad-scale metabolism functions decreasing and typical nutrient-cycling functions increasing. Our results imply high levels of microbial physiological versatility in the face of significant biodiversity decline, which, however, does not necessarily mean that a loss in total functional abundance, such as microbial activity, can be overlooked in the background of unprecedented species extinction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...