Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Development ; 149(10)2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35451459

RESUMEN

Apical constriction, or a reduction in size of the apical domain, underlies many morphogenetic events during development. Actomyosin complexes play an essential role in apical constriction; however, the detailed analysis of molecular mechanisms is still pending. Here, we show that Lim domain only protein 7 (Lmo7), a multidomain adaptor at apical junctions, promotes apical constriction in the Xenopus superficial ectoderm, whereas apical domain size increases in Lmo7-depleted cells. Lmo7 is primarily localized at apical junctions and promotes the formation of the dense circumferential actomyosin belt. Strikingly, Lmo7 binds non-muscle myosin II (NMII) and recruits it to apical junctions and the apical cortex. This NMII recruitment is essential for Lmo7-mediated apical constriction. Lmo7 knockdown decreases NMIIA localization at apical junctions and delays neural tube closure in Xenopus embryos. Our findings suggest that Lmo7 serves as a scaffold that regulates actomyosin contractility and apical domain size.


Asunto(s)
Actomiosina , Ectodermo , Actomiosina/metabolismo , Animales , Ectodermo/metabolismo , Morfogénesis/fisiología , Cadenas Pesadas de Miosina , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Xenopus laevis/metabolismo
2.
Cold Spring Harb Protoc ; 2022(5): Pdb.prot107649, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34667121

RESUMEN

Live imaging of Xenopus embryos and organotypic explants can be challenging because of their large size and slippery nature. This protocol covers the preparation of special chambers for immobilizing Xenopus embryos and embryonic explants for live-cell and tissue imaging. The opaque nature of Xenopus embryonic tissues enables simple bright-field imaging techniques for tracking surface movements across large regions. Such surface imaging of embryos or organotypic explants can directly reveal cell behaviors, obviating the need for complex postprocessing commonly required to extract this data from 3D confocal or light-sheet observations of more transparent embryos. Furthermore, Xenopus embryos may be filled with light-absorbing pigment granules and light-scattering yolk platelets, but these limitations are offset by the utilitarian nature of Xenopus organotypic explants that expose and stabilize large embryonic cells in a nearly native context for high-resolution live-cell imaging. Additionally, whole embryos can be stabilized for long-term bright-field and confocal microscopy. Simple explants can be prepared using a single cell type, and organotypic explants can be prepared in which multiple tissue types are dissected while retaining native tissue-tissue interactions. These preparations enable both in-toto imaging of tissue dynamics and super-resolution imaging of protein dynamics within individual cells. We present detailed protocols for these methods together with references to applications.


Asunto(s)
Embrión de Mamíferos , Animales , Microscopía Confocal/métodos , Xenopus laevis
3.
Curr Opin Genet Dev ; 63: 71-77, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32563783

RESUMEN

Features of amphibian embryos that have served so well to elucidate the genetics of vertebrate development also enable detailed analysis of the physics that shape morphogenesis and regulate development. Biophysical tools are revealing how genes control mechanical properties of the embryo. The same tools that describe and control mechanical properties are being turned to reveal how dynamic mechanical information and feedback regulate biological programs of development. In this review we outline efforts to explore the various roles of mechanical cues in guiding cilia biology, axonal pathfinding, goblet cell regeneration, epithelial-to-mesenchymal transitions in neural crest, and mesenchymal-to-epithelial transitions in heart progenitors. These case studies reveal the power of Xenopus experimental embryology to expose pathways integrating mechanical cues with programs of development, organogenesis, and regeneration.


Asunto(s)
Biofisica , Diferenciación Celular , Embrión no Mamífero/citología , Embrión no Mamífero/fisiología , Transición Epitelial-Mesenquimal , Morfogénesis , Cresta Neural/fisiología , Animales , Fenómenos Biomecánicos , Movimiento Celular , Cresta Neural/citología , Xenopus laevis
4.
J Cell Sci ; 131(10)2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29661847

RESUMEN

Ajuba family proteins are implicated in the assembly of cell junctions and have been reported to antagonize Hippo signaling in response to cytoskeletal tension. To assess the role of these proteins in actomyosin contractility, we examined the localization and function of Wtip, a member of the Ajuba family, in Xenopus early embryos. Targeted in vivo depletion of Wtip inhibited apical constriction in neuroepithelial cells and elicited neural tube defects. Fluorescent protein-tagged Wtip showed predominant punctate localization along the cell junctions in the epidermis and a linear junctional pattern in the neuroectoderm. In cells undergoing Shroom3-induced apical constriction, the punctate distribution was reorganized into a linear pattern. Conversely, the linear junctional pattern of Wtip in neuroectoderm changed to a more punctate distribution in cells with reduced myosin II activity. The C-terminal fragment of Wtip physically associated with Shroom3 and interfered with Shroom3 activity and neural fold formation. We therefore propose that Wtip is a tension-sensitive cytoskeletal adaptor that regulates apical constriction during vertebrate neurulation.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Actomiosina/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Tubo Neural/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/crecimiento & desarrollo , Xenopus/metabolismo , Actinas/genética , Actinas/metabolismo , Actomiosina/genética , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Humanos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Familia de Multigenes , Tubo Neural/metabolismo , Unión Proteica , Dominios Proteicos , Factores de Transcripción/química , Factores de Transcripción/genética , Xenopus/genética , Proteínas de Xenopus/química , Proteínas de Xenopus/genética
5.
Elife ; 52016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27658614

RESUMEN

The coordinated orientation of cells across the tissue plane, known as planar cell polarity (PCP), is manifested by the segregation of core PCP proteins to different sides of the cell. Secreted Wnt ligands are involved in many PCP-dependent processes, yet whether they act as polarity cues has been controversial. We show that in Xenopus early ectoderm, the Prickle3/Vangl2 complex was polarized to anterior cell edges and this polarity was disrupted by several Wnt antagonists. In midgastrula embryos, Wnt5a, Wnt11, and Wnt11b, but not Wnt3a, acted across many cell diameters to orient Prickle3/Vangl2 complexes away from their sources regardless of their positions relative to the body axis. The planar polarity of endogenous Vangl2 in the neuroectoderm was similarly redirected by an ectopic Wnt source and disrupted after depletion of Wnt11b in the presumptive posterior region of the embryo. These observations provide evidence for the instructive role of Wnt ligands in vertebrate PCP.


Asunto(s)
Polaridad Celular , Ectodermo/fisiología , Proteínas Wnt/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/embriología , Animales
6.
Sci Rep ; 6: 24104, 2016 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-27062996

RESUMEN

PCP proteins maintain planar polarity in many epithelial tissues and have been implicated in cilia development in vertebrate embryos. In this study we examine Prickle3 (Pk3), a vertebrate homologue of Drosophila Prickle, in Xenopus gastrocoel roof plate (GRP). GRP is a tissue equivalent to the mouse node, in which cilia-generated flow promotes left-right patterning. We show that Pk3 is enriched at the basal body of GRP cells but is recruited by Vangl2 to anterior cell borders. Interference with Pk3 function disrupted the anterior polarization of endogenous Vangl2 and the posterior localization of cilia in GRP cells, demonstrating its role in PCP. Strikingly, in cells with reduced Pk3 activity, cilia growth was inhibited and γ-tubulin and Nedd1 no longer associated with the basal body, suggesting that Pk3 has a novel function in basal body organization. Mechanistically, this function of Pk3 may involve Wilms tumor protein 1-interacting protein (Wtip), which physically associates with and cooperates with Pk3 to regulate ciliogenesis. We propose that, in addition to cell polarity, PCP components control basal body organization and function.


Asunto(s)
Cuerpos Basales/metabolismo , Cilios/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas con Dominio LIM/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animales , Polaridad Celular , Proteínas de Unión al ADN/genética , Embrión no Mamífero/metabolismo , Genes Reporteros , Células HEK293 , Humanos , Hibridación Fluorescente in Situ , Proteínas con Dominio LIM/genética , Proteínas de la Membrana/metabolismo , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/genética , Plásmidos/genética , Plásmidos/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas de Xenopus/genética
7.
Dev Biol ; 408(2): 316-27, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26079437

RESUMEN

The planar cell polarity (PCP) pathway orients cells in diverse epithelial tissues in Drosophila and vertebrate embryos and has been implicated in many human congenital defects and diseases, such as ciliopathies, polycystic kidney disease and malignant cancers. During vertebrate gastrulation and neurulation, PCP signaling is required for convergent extension movements, which are primarily driven by mediolateral cell intercalations, whereas the role for PCP signaling in radial cell intercalations has been unclear. In this study, we examine the function of the core PCP proteins Vangl2, Prickle3 (Pk3) and Disheveled in the ectodermal cells, which undergo radial intercalations during Xenopus gastrulation and neurulation. In the epidermis, multiciliated cell (MCC) progenitors originate in the inner layer, but subsequently migrate to the embryo surface during neurulation. We find that the Vangl2/Pk protein complexes are enriched at the apical domain of intercalating MCCs and are essential for the MCC intercalatory behavior. Addressing the underlying mechanism, we identified KIF13B, as a motor protein that binds Disheveled. KIF13B is required for MCC intercalation and acts synergistically with Vangl2 and Disheveled, indicating that it may mediate microtubule-dependent trafficking of PCP proteins necessary for cell shape regulation. In the neural plate, the Vangl2/Pk complexes were also concentrated near the outermost surface of deep layer cells, suggesting a general role for PCP in radial intercalation. Consistent with this hypothesis, the ectodermal tissues deficient in Vangl2 or Disheveled functions contained more cell layers than normal tissues. We propose that PCP signaling is essential for both mediolateral and radial cell intercalations during vertebrate morphogenesis. These expanded roles underscore the significance of vertebrate PCP proteins as factors contributing to a number of diseases, including neural tube defects, tumor metastases, and various genetic syndromes characterized by abnormal migratory cell behaviors.


Asunto(s)
Polaridad Celular/fisiología , Proteínas de Xenopus/fisiología , Xenopus laevis/embriología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Animales Modificados Genéticamente , Movimiento Celular , Polaridad Celular/genética , Extensiones de la Superficie Celular/genética , Extensiones de la Superficie Celular/fisiología , Cilios/genética , Cilios/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Proteínas Dishevelled , Células Epiteliales/fisiología , Gastrulación/genética , Gastrulación/fisiología , Células HEK293 , Humanos , Cinesinas/genética , Cinesinas/fisiología , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Neurulación/genética , Neurulación/fisiología , Fosfoproteínas/genética , Fosfoproteínas/fisiología , Transducción de Señal , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/fisiología
8.
Development ; 142(1): 99-107, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25480917

RESUMEN

Core planar cell polarity (PCP) proteins are well known to regulate polarity in Drosophila and vertebrate epithelia; however, their functions in vertebrate morphogenesis remain poorly understood. In this study, we describe a role for PCP signaling in the process of apical constriction during Xenopus gastrulation. The core PCP protein Vangl2 is detected at the apical surfaces of cells at the blastopore lip, and it functions during blastopore formation and closure. Further experiments show that Vangl2, as well as Daam1 and Rho-associated kinase (Rock), regulate apical constriction of bottle cells at the blastopore and ectopic constriction of ectoderm cells triggered by the actin-binding protein Shroom3. At the blastopore lip, Vangl2 is required for the apical accumulation of the recycling endosome marker Rab11. We also show that Rab11 and the associated motor protein Myosin V play essential roles in both endogenous and ectopic apical constriction, and might be involved in Vangl2 trafficking to the cell surface. Overexpression of Rab11 RNA was sufficient to partly restore normal blastopore formation in Vangl2-deficient embryos. These observations suggest that Vangl2 affects Rab11 to regulate apical constriction during blastopore formation.


Asunto(s)
Tipificación del Cuerpo , Gastrulación , Proteínas de la Membrana/metabolismo , Miosina Tipo V/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Xenopus laevis/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Polaridad Celular , Gástrula/citología , Gástrula/embriología , Gástrula/metabolismo , Ratones , Unión Proteica , Canales de Sodio/metabolismo , Fracciones Subcelulares/metabolismo
9.
PLoS One ; 8(11): e81854, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24282618

RESUMEN

Apical constriction is an essential cell behavior during neural tube closure, but its underlying mechanisms are not fully understood. Lulu, or EPB4.1l5, is a FERM domain protein that has been implicated in apical constriction and actomyosin contractility in mouse embryos and cultured cells. Interference with the function of Lulu in Xenopus embryos by a specific antisense morpholino oligonucleotide or a carboxy-terminal fragment of Lulu impaired apical constriction during neural plate hinge formation. This effect was likely due to lack of actomyosin contractility in superficial neuroectodermal cells. By contrast, overexpression of Lulu RNA in embryonic ectoderm cells triggered ectopic apico-basal elongation and apical constriction, accompanied by the apical recruitment of F-actin. Depletion of endogenous Lulu disrupted the localization and activity of Shroom3, a PDZ-containing actin-binding protein that has also been implicated in apical constriction. Furthermore, Lulu and Shroom3 RNAs cooperated in triggering ectopic apical constriction in embryonic ectoderm. Our findings reveal that Lulu is essential for Shroom3-dependent apical constriction during vertebrate neural tube closure.


Asunto(s)
Proteínas del Citoesqueleto/fisiología , Proteínas de la Membrana/fisiología , Proteínas de Microfilamentos/fisiología , Tubo Neural/fisiología , Actomiosina/metabolismo , Animales , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Datos de Secuencia Molecular , Fracciones Subcelulares/metabolismo , Xenopus laevis/embriología
10.
Mol Biol Cell ; 22(4): 448-56, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21177827

RESUMEN

Dynamic instability is a critical property of microtubules (MTs). By regulating the rate of tubulin polymerization and depolymerization, cells organize the MT cytoskeleton to accommodate their specific functions. Among many processes, posttranslational modifications of tubulin are implicated in regulating MT functions. Here we report a novel tubulin acetylation catalyzed by acetyltransferase San at lysine 252 (K252) of ß-tubulin. This acetylation, which is also detected in vivo, is added to soluble tubulin heterodimers but not tubulins in MTs. The acetylation-mimicking K252A/Q mutants were incorporated into the MT cytoskeleton in HeLa cells without causing any obvious MT defect. However, after cold-induced catastrophe, MT regrowth is accelerated in San-siRNA cells while the incorporation of acetylation-mimicking mutant tubulins is severely impeded. K252 of ß-tubulin localizes at the interface of α-/ß-tubulins and interacts with the phosphate group of the α-tubulin-bound GTP. We propose that the acetylation slows down tubulin incorporation into MTs by neutralizing the positive charge on K252 and allowing tubulin heterodimers to adopt a conformation that disfavors tubulin incorporation.


Asunto(s)
Acetiltransferasas/química , Microtúbulos/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Acetilación , Línea Celular Tumoral , Citoesqueleto/genética , Citoesqueleto/metabolismo , Regulación hacia Abajo/genética , Células HeLa , Humanos , Microtúbulos/genética , Polimerizacion , Procesamiento Proteico-Postraduccional/genética , Tubulina (Proteína)/genética
11.
J Biol Chem ; 283(24): 16915-27, 2008 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-18397879

RESUMEN

ADP-ribosylation factors (Arfs) are highly conserved small GTPases and are critical components of vesicle trafficking. Yeast Arf3p, despite its similarity to mammalian Arf6, is not required for endocytosis but is involved in polarity development. In this study, we identified an Arf3p interacting protein 1 (Afi1p), which, through its N-terminal conserved region, specifically interacts with GTP-bound Arf3p. Afi1p is distributed asymmetrically at the plasma membrane and is required for polarized distribution of Arf3p but not of an Arf3p guanine nucleotide-exchange factor, Yel1p. However, Afi1p is not required for targeting of Arf3p or Yel1p to the plasma membrane. Like arf3 mutant yeast, afi1 mutant yeast exhibited an abnormal budding pattern and partially delayed actin patch polarization. An Afi1p, (38)KLGP4A-Afi1p, mutated at the Arf3p-binding region, loses its ability to interact with Arf3p and maintain the polarized distribution of Arf3p. Although (38)KLGP4A-Afi1p still possessed a proper polarized distribution, it lost its ability to rescue actin patch polarization in afi1 mutant cells. Our findings demonstrate that Afi1p functions as an Arf3p polarization-specific adapter and participates in development of polarity.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas Portadoras/fisiología , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Actinas/química , Secuencia de Aminoácidos , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Datos de Secuencia Molecular , Mutación , Faloidina/química , Plásmidos/metabolismo , Unión Proteica , Saccharomyces cerevisiae/fisiología , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/metabolismo , Técnicas del Sistema de Dos Híbridos
12.
J Cell Biol ; 177(4): 587-97, 2007 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-17502424

RESUMEN

Proper sister chromatid cohesion is critical for maintaining genetic stability. San is a putative acetyltransferase that is important for sister chromatid cohesion in Drosophila melanogaster, but not in budding yeast. We showed that San is critical for sister chromatid cohesion in HeLa cells, suggesting that this mechanism may be conserved in metazoans. Furthermore, although a small fraction of San interacts with the NatA complex, San appears to mediate cohesion independently. San exhibits acetyltransferase activity in vitro, and its activity is required for sister chromatid cohesion in vivo. In the absence of San, Sgo1 localizes correctly throughout the cell cycle. However, cohesin is no longer detected at the mitotic centromeres. Furthermore, San localizes to the cytoplasm in interphase cells; thus, it may not gain access to chromosomes until mitosis. Moreover, in San-depleted cells, further depletion of Plk1 rescues the cohesion along the chromosome arms, but not at the centromeres. Collectively, San may be specifically required for the maintenance of the centromeric cohesion in mitosis.


Asunto(s)
Acetiltransferasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Centrómero/enzimología , Proteínas Cromosómicas no Histona/metabolismo , Mitosis/fisiología , Proteínas Nucleares/metabolismo , Acetiltransferasas/fisiología , Células HeLa , Humanos , Acetiltransferasa E N-Terminal , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA