Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 49(8): 1937-1940, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621045

RESUMEN

Coded aperture-based compression has proven to be an effective approach for high-density cold data storage. Nevertheless, its limited decoding speed represents a significant challenge for its broader application. We introduce a novel, to the best of our knowledge, decoding method leveraging the fast and flexible denoising network (FFDNet), capable of decoding a coded aperture-based compressive data page within 30.64 s. The practicality of the method has been confirmed in the decoding of monochromatic photo arrays, full-color photos, and dynamic videos. In experimental trials, the variance between decoded results obtained via the FFDNet-based method and the FFDNet-absent method in terms of average PSNR is less than 1 dB, while realizing a decoding speed enhancement of over 100-fold when employing the FFDNet-based method.

2.
Opt Lett ; 48(13): 3625-3628, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37390198

RESUMEN

Liquid crystal on silicon (LCoS) is a widely used spatial light modulator (SLM) in computer-generated holography (CGH). However, the phase-modulating profile of LCoS is often not ideally uniform in application, bringing about undesired intensity fringes. In this study, we overcome this problem by proposing a highly robust dual-SLM complex-amplitude CGH technique, which incorporates a polarimetric mode and a diffractive mode. The polarimetric mode linearizes the general phase modulations of the two SLMs separately, while the diffractive mode uses camera-in-the-loop optimization to achieve improved holographic display. Experimental results show the effectiveness of our proposal in improving reconstructing accuracy by 21.12% in peak signal-to-noise ratio (PSNR) and 50.74% in structure similarity index measure (SSIM), using LCoS SLMs with originally non-uniform phase-modulating profiles.


Asunto(s)
Holografía , Holografía/instrumentación , Holografía/métodos , Holografía/normas , Relación Señal-Ruido , Algoritmos
3.
Appl Opt ; 62(10): D17-D22, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37132765

RESUMEN

Liquid crystal on silicon (LCoS) has been the dominant choice for wavelength selective switches (WSSs) in telecommunication industry due to its high spatial resolution and compatibility with software defined flexible grid feature. Current LCoS devices generally have a limited steering angle, which also limits the minimum footprint of the WSS system. The steering angle of LCoS devices is fundamentally determined by the pixel pitch, which is highly challenging to be optimized without resorting to other techniques. In this paper, we present an approach to increase the steering angle of LCoS devices through the integration with dielectric metasurfaces. Here a dielectric Huygens-type metasurface is integrated with an LCoS device to increase its steering angle by 10°. This approach can effectively minimize the overall size of the WSS system while maintaining a small form factor of the LCoS device.

4.
Appl Opt ; 62(10): D31-D38, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37132767

RESUMEN

Phase flicker in liquid crystal on silicon (LCoS) devices can decrease the effective phase modulation resolution by introducing overlapped phase oscillations between adjacent modulated gray levels, thus degrading the performance of LCoS devices in various applications. However, the effect of phase flicker on a holographic display is often overlooked. From an application angle, this paper investigates the quality of the holographic reconstructed image, especially sharpness, under the static and dynamic effects of different flicker magnitudes. Both the simulation and experimental results reveal that the increment in the magnitude of phase flicker causes an equal sharpness deterioration with the reduction of the numbers of hologram phase modulation levels.

5.
Appl Opt ; 62(10): DH1-DH3, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37132809

RESUMEN

This feature issue is a continuation of a tradition to follow the conclusion of the Optica Topical Meeting on Digital Holography and 3D Imaging (DH+3D). It addresses current research topics in digital holography and 3D imaging that are also in line with the topics of Applied Optics and Journal of the Optical Society of America A.

6.
J Opt Soc Am A Opt Image Sci Vis ; 40(4): DH1-DH3, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37132973

RESUMEN

This feature issue is a continuation of a tradition to follow the conclusion of the Optica Topical Meeting on Digital Holography and 3D Imaging (DH+3D). It addresses current research topics in digital holography and 3D imaging that are also in line with the topics of Applied Optics and Journal of the Optical Society of America A.

7.
Opt Express ; 31(4): 5378-5387, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36823819

RESUMEN

Active metasurfaces add a new dimension to static metasurfaces by introducing tunability, and this has received enormous attention from industry. Although various mechanisms have been proposed over the past few years in literature, solutions with good practicality are limited. Liquid crystal (LC)-based active metasurface is one of the most promising approaches due to the well-established LC industry. In this paper, an electrically tunable active metasurface was proposed and experimentally demonstrated using photoaligned nematic LC. The good quality of the LC photoalignment on the metasurface was demonstrated. Tunable transmission was obtained for telecommunication C band and the modulation depth in transmission amplitude of 94% was realized for 1530 nm. Sub-millisecond response time was achieved at operating a temperature of 60°C. The progress made here presents the potential of LC-based active metasurfaces for fast-switching photonic devices at optical communication wavelengths. More importantly, this work lays the foundations for the next-generation liquid crystal on silicon (LCoS) devices that are integrated with metasurfaces (meta-LCoS).

8.
Sensors (Basel) ; 22(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36433617

RESUMEN

In this paper, we propose and experimentally demonstrate a parallel coding and two-beam combining approach for the simultaneous implementation of dynamically generating holographic patterns at their arbitrary linear polarization states. Two orthogonal input beams are parallelly and independently encoded with the same target image information but there is different amplitude information by using two-phase computer-generated holograms (CGH) on two Liquid-Crystal-on-Silicon-Spatial-Light Modulators (LCOS SLMs). Two modulated beams are then considered as two polarization components and are spatially superposed to form the target polarization state. The final linear vector beam is created by the spatial superposition of the two base beams, capable of controlling the vector angle through the phase depth of the phase-only CGHs. Meanwhile, the combined holographic patterns can be freely encoded by the holograms of two vector components. Thus, this allows us to tailor the optical fields endowed with arbitrary holographic patterns and the linear polarization states at the same time. This method provides a more promising approach for laser data writing generation systems in the next-generation optical data storage technology in transparent materials.

9.
Light Sci Appl ; 11(1): 57, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35292621

RESUMEN

Here, we propose and demonstrate a modular holographic display system that allows seamless spatial tiling of multiple coarse integral holographic (CIH) displays called "holobricks". A holobrick is a self-contained CIH module enclosing a spatial light modulator (SLM), a scanner, and periscopic coarse integral optics. Modular CIH uses a coarse pitch and small area but high-bandwidth SLM in conjunction with periscopic coarse integral optics to form the angularly tiled 3D holograms with large viewing areas and fields of view. The creation of periscopic coarse integral optics prevents the optical system from being larger than the holographic image and allows the holographic fringe pattern to fill the entire face of the holobrick. Thus, multiple holobricks can be seamlessly abutted to form a scalable spatially tiled holographic image display capable of both wide field-of-view angle and arbitrary large-size area. We demonstrate an initial prototype that seamlessly tiles two holobricks each with 1024 × 768 pixels, 40° FOV, full color, 24 fps, displaying 2D, 3D holographic stereograms, and full parallax 3D CGI Fresnel holograms.

10.
11.
J Opt Soc Am A Opt Image Sci Vis ; 39(2): DH1-DH4, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35200969

RESUMEN

This feature issue is a continuation of a tradition, since 2007, to follow the conclusion of the OSA Topical Meeting on Digital Holography and 3D Imaging (DH+3D). It addresses current research topics in digital holography (DH) and 3D imaging that are also in line with the topics of Applied Optics (AO) and the Journal of the Optical Society of America A (JOSA A).

12.
Appl Opt ; 61(5): B25-B33, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35201122

RESUMEN

Phase flicker can degrade the performance of holographic applications at the device and application levels. On the device side, the meaningful phase modulation resolution is proved to be limited by the overlapping between adjacent phase levels caused by flicker. Here, the tolerance of the overlapping for different modulation levels is provided. The frame rate of the device is also constrained by the phase flicker. The balance between low flicker and fast LC response for fast frame rate is quantitatively analyzed. On the application side, the effects of real phase flicker on the performance of blazed gratings and image holograms are investigated using the temporal phase flicker profiles measured from a phase-only liquid crystal on silicon (LCOS) device; they are shown to be comparable with that introduced by quantization level and amplitude noise, respectively.

13.
Appl Opt ; 61(5): B34-B42, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35201123

RESUMEN

The technology of five-dimensional (5D) optical data storage in transparent materials paves a promising way to unlimited lifetime data storage for future cloud use. Phase-only liquid-crystal-on-silicon spatial light modulators (LCOS SLMs) have already exhibited its potential for this application in tailoring ultrafast laser writing beams for 5D optical data storage. A phase-only LCOS SLM can generate arbitrary data patterns by using diffractive holographic imaging for data writing light beam generation. However, the polarization control of the output holographic image is still achieved by using an external polarization modulator, which leads to complications, bulkiness, and large delays in current methods. In this paper, we presented an efficient phase and polarization modulation method through a compact system based on a single phase-only LCOS SLM to simultaneously control both the holographic image and its polarization state. The proposed method utilizes two-polarization-component coding in conjunction with a polarization component rotation technique in a compact system. Using this polarization rotation technique, two light components can be independently coded by separately using two holograms on two halves of the LCOS SLM. We experimentally construct a proof-of-concept prototype of the compact system, and the effectiveness of the system has been experimentally verified.

14.
Appl Opt ; 61(5): DH1-DH4, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35201180

RESUMEN

This feature issue is a continuation of a tradition, since 2007, to follow the conclusion of the OSA Topical Meeting on Digital Holography and 3D Imaging (DH+3D). It addresses current research topics in digital holography (DH) and 3D imaging that are also in line with the topics of Applied Optics (AO) and the Journal of the Optical Society of America A (JOSA A).

15.
Opt Express ; 29(16): 24614-24628, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34614814

RESUMEN

Sub-millisecond response time with a refresh rate higher than 2000 frames per second (fps) and no degradation of the contrast ratio or diffraction efficiency is demonstrated in working liquid crystal on silicon (LCOS) spatial light modulators (SLMs) with 8-bit grey levels of amplitude and phase modulations. This makes possible to achieve an information bandwidth of about 190 Gb s-1 with a 4k LCOS operating at 10-bit phase modulation levels. The normalised contrast stays at almost the unit level for a frame rate up to 1700 fps and at higher than 0.9 for 2500 fps. The diffraction efficiency stays above -1.0 dB for a frame rate up to 2400 fps. Such a fast response allows us to eliminate image blurring in replaying a fast movie.

16.
Opt Express ; 29(17): 27373-27395, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34615155

RESUMEN

This work exploits deep learning to develop real-time hologram generation. We propose an original concept of introducing hologram modulators to allow the use of generative models to interpret complex-valued frequency data directly. This new mechanism enables the pre-trained learning model to generate frequency samples with variations in the underlying generative features. To achieve an object-based hologram generation, we also develop a new generative model, named the channeled variational autoencoder (CVAE). The pre-trained CVAE can then interpret and learn the hidden structure of input holograms. It is thus able to generate holograms through the learning of the disentangled latent representations, which can allow us to specify each disentangled feature for a specific object. Additionally, we propose a new technique called hologram super-resolution (HSR) to super-resolve a low-resolution hologram input to a super-resolution hologram output. Combining the proposed CVAE and HSR, we successfully develop a new approach to generate super-resolved, complex-amplitude holograms for 3D scenes.

17.
ACS Appl Mater Interfaces ; 13(16): 19055-19063, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33861560

RESUMEN

A huge challenge is to control the nucleation of crystallites/aggregates in the solution during polymer film formation to generate desired structures. In this work, we investigate crystallization of P(NDI2OD-T2), a donor-acceptor polymer semiconductor, with controlled solution flow along the contact line between the drying film and solution through a seesaw-like pivoting of samples during polymer drying. By controlling the pivoting frequency/amplitude, various types of line patterns can be observed: (I) an array of fishbone-like stripes oriented in the film-growth direction; (II) the pinning-depinning of contact line (PDCL)-mechanism-defined patterned wires along the contact line; and (III) periodic twined crystalline line pattern oriented in the direction of the contact line. The rich variety of pattern formation observed is attributed to the distinctiveness of the donor-acceptor conjugated polymer structure. The result measured from thin-film transistors made of the generated films/structures showed that the charge mobility of P(NDI2OD-T2) does not change much with the film morphology, which supports recent controversy over the charge-transportation mechanism of some donor-acceptor polymer semiconductors.

18.
Opt Express ; 29(2): 2597-2612, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33726452

RESUMEN

Herein, we propose a band-limited double-phase method to improve the quality of reconstructed images encoded by double-phase holograms (DPHs) derived from complex-amplitude light waves. Although the quality of images produced by DPHs was improved compared to that of conventional holographic images, it still suffered from degradation because of the spatial shifting noise generated during the conversion from complex-amplitude holograms to phase-only holograms. The proposed method overcomes this shortcoming by defining a band-limiting function according to the spatial distribution of DPHs in the frequency domain to remove the specific spatial frequency components severely affected by the spatial shifting of DPHs. The sharpness of images reconstructed from band-limited DPHs with appropriate optical filtering showed an improvement of 36.84% in simulations and 51.67% in experiments evaluated by 10-90% intensity variation.

19.
Opt Express ; 29(1): 119-133, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33362095

RESUMEN

Owing to the characteristics of existing spatial light modulators (SLMs), the computer-generated hologram (CGH) with continuous complex-amplitude is conventionally converted to a quantized amplitude-only or phase-only CGH in practical applications. The quantization of CGH significantly affects the holographic reconstruction quality. In this work, we evaluated the influence of the quantization for both amplitude and phase on the quality of holographic reconstructions by traversing method. Furthermore, we considered several critical CGH parameters, including resolution, zero-padding size, reconstruction distance, wavelength, random phase, pixel pitch, bit depth, phase modulation deviation, and filling factor. Based on evaluations, the optimal quantization for both available and future SLM devices is suggested.

20.
ACS Appl Electron Mater ; 2(8): 2611-2618, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32879912

RESUMEN

Ion-sensitive transistors with nanoscale or microscale dimensions are promising for high-resolution electrophysiological recording and sensing. Technology that can pattern polymer functional materials directly from a solution can effectively avoid any chemical damage induced by conventional lithography techniques. The application of a mold-guided drying technique to pattern PEDOT:PSS-based transistors with high resolution directly from the water-based suspension is presented in this paper. Gold electrodes with short channels were first defined by creating high-resolution polymer lines with mold-guided drying followed by pattern transfer through a lift-off process. Then, PEDOT:PSS lines were subsequently created through an identical mold-guided drying process on the predefined electrodes. Small-scale transistor devices with both shortened channel length and width exhibited a good high-frequency response because of the weak capacitive effect. This is particularly advantageous for electrochemical transistors since the use of conventional fabrication techniques is extremely challenging in this case. In addition, modified polymer chain alignment of the assembled PEDOT:PSS lines during the drying process was observed by optical and electrical measurement. The mold-guided drying technique has been proven to be a promising method to fabricate small-scale devices, especially for biological applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...