Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gut ; 70(4): 761-774, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32694178

RESUMEN

OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD)-associated hepatocellular carcinoma (HCC) is an increasing healthcare burden worldwide. We examined the role of dietary cholesterol in driving NAFLD-HCC through modulating gut microbiota and its metabolites. DESIGN: High-fat/high-cholesterol (HFHC), high-fat/low-cholesterol or normal chow diet was fed to C57BL/6 male littermates for 14 months. Cholesterol-lowering drug atorvastatin was administered to HFHC-fed mice. Germ-free mice were transplanted with stools from mice fed different diets to determine the direct role of cholesterol modulated-microbiota in NAFLD-HCC. Gut microbiota was analysed by 16S rRNA sequencing and serum metabolites by liquid chromatography-mass spectrometry (LC-MS) metabolomic analysis. Faecal microbial compositions were examined in 59 hypercholesterolemia patients and 39 healthy controls. RESULTS: High dietary cholesterol led to the sequential progression of steatosis, steatohepatitis, fibrosis and eventually HCC in mice, concomitant with insulin resistance. Cholesterol-induced NAFLD-HCC formation was associated with gut microbiota dysbiosis. The microbiota composition clustered distinctly along stages of steatosis, steatohepatitis and HCC. Mucispirillum, Desulfovibrio, Anaerotruncus and Desulfovibrionaceae increased sequentially; while Bifidobacterium and Bacteroides were depleted in HFHC-fed mice, which was corroborated in human hypercholesteremia patients. Dietary cholesterol induced gut bacterial metabolites alteration including increased taurocholic acid and decreased 3-indolepropionic acid. Germ-free mice gavaged with stools from mice fed HFHC manifested hepatic lipid accumulation, inflammation and cell proliferation. Moreover, atorvastatin restored cholesterol-induced gut microbiota dysbiosis and completely prevented NAFLD-HCC development. CONCLUSIONS: Dietary cholesterol drives NAFLD-HCC formation by inducing alteration of gut microbiota and metabolites in mice. Cholesterol inhibitory therapy and gut microbiota manipulation may be effective strategies for NAFLD-HCC prevention.


Asunto(s)
Atorvastatina/farmacología , Carcinoma Hepatocelular/prevención & control , Colesterol en la Dieta , Microbioma Gastrointestinal/efectos de los fármacos , Neoplasias Hepáticas/prevención & control , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Animales , Carcinoma Hepatocelular/etiología , Estudios de Casos y Controles , Progresión de la Enfermedad , Trasplante de Microbiota Fecal , Neoplasias Hepáticas/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/complicaciones
2.
J Gastroenterol Hepatol ; 36(4): 1035-1043, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32633422

RESUMEN

BACKGROUND AND AIM: We have previously shown that fecal microbial markers might be useful for non-invasive diagnosis of colorectal cancer (CRC) and adenoma. Here, we assessed the application of microbial DNA markers, as compared with and in combination with fecal immunochemical test (FIT), in detecting CRC and adenoma in symptomatic patients and asymptomatic subjects. METHODS: We recruited 676 subjects [210 CRC, 115 advanced adenoma (AA), 86 non-advanced adenoma, and 265 non-neoplastic controls], including 241 symptomatic and 435 asymptomatic subjects. Fecal abundances of Fusobacterium nucleatum, a Lachnoclostridium sp. m3, Bacteroides clarus, and Clostridium hathewayi were quantified by quantitative PCR. Combining score of the four microbial markers (4Bac) and diagnostic prediction were determined using our previously established scoring model and cutoff values and FIT with a cutoff of 100 ng Hb/mL. RESULTS: 4Bac detected similar percentages of CRC [85.3% (95%CI: 79.2-90.2%) vs 84.9% (68.1-94.9%)] and AA [35.7% (12.8-64.9%) vs 38.6% (29.1-48.8%)], while FIT detected more CRC [72.1% (63.7-79.4%) vs 66.7% (48.2-82.0%)] and AA [28.6% (8.4-58.1%) vs 16.8% (10.1-25.6%)], in symptomatic vs asymptomatic subjects, respectively. Focusing on the asymptomatic cohort, 4Bac was more sensitive for diagnosing CRC and AA than FIT (P < 0.001), with lower specificity [83.3% (77.6-88.0%) vs 98.6% (96.0-99.7%)]. FIT failed to detect any non-advanced adenoma [0% (0.0-4.2%)] compared with 4Bac [41.9% (31.3-53.0%), P < 0.0001]. Combining 4Bac with FIT improved sensitivities for CRC [90.9% (75.7-98.1%)] and AA [48.5% (38.4-58.7%)] detection. CONCLUSION: Quantitation of fecal microbial DNA markers may serve as a new test, stand alone, or in combination with FIT for screening colorectal neoplasm in asymptomatic subjects.


Asunto(s)
Adenoma/diagnóstico , Enfermedades Asintomáticas , Neoplasias Colorrectales/diagnóstico , ADN Bacteriano/análisis , Heces/microbiología , Microbioma Gastrointestinal/genética , Anciano , Biomarcadores/análisis , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Sensibilidad y Especificidad
3.
J Pathol ; 248(4): 488-500, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30945293

RESUMEN

The role of macrophages in fibrosing steatohepatitis is largely unclear. We characterized the origin and molecular mechanisms of macrophages and its targeted therapy of fibrosing steatohepatitis. Fibrosing steatohepatitis was established in Alms1 mutant (foz/foz) and C57BL/6J wildtype mice fed high-fat/high-cholesterol or methionine- and choline-deficient diet. Bone marrow transplantation was performed to track the macrophage origin in fibrosing steatohepatitis. Macrophages were depleted using liposomal clodronate. Primary macrophages were isolated from bone marrow for adoptive transfer into mice. We found that macrophage infiltration is induced in two mouse models of fibrosing steatohepatitis and human nonalcoholic steatohepatitis-fibrosis patients. Bone marrow-derived macrophages (BMMs) contribute to the hepatic macrophage accumulation in experimental fibrosing steatohepatitis. Depletion of hepatic BMMs by liposomal clodronate during liver injury attenuated fibrosing steatohepatitis, whilst BMMs depletion after liver injury delayed the regression of fibrosing steatohepatitis. The pro-fibrotic effect of macrophages was associated with reduced activation of hepatic stellate cells (HSCs), collagen deposition and hepatic expression of key pro-fibrotic factors (TIMP1, TIMP2, and TGFß1) and endoplasmic reticulum stress markers (GRP78, IRE1α, and PDI). Conversely, adoptive transfer of BMMs significantly aggravated fibrosing steatohepatitis. Moreover, macrophage-conditioned medium directly promoted the phenotypic transition of primary quiescent HSCs to activated HSCs; it enhanced activation and proliferation but decreased apoptosis of HSC cell lines (LX-2 and HSC-T6). The effect of BMMs in promoting fibrosing steatohepatitis was mediated by inducing key pro-fibrosis factors and signaling pathways including cytokine/chemokine, TGFß and complement cascade as assessed by cDNA expression array. Complement 3a receptor (C3ar1) was a predominant effector of macrophage mediated fibrosing steatohepatitis. Knockout of C3ar1 in mice blunted development of fibrosing steatohepatitis. In conclusion, BMMs promoted the progression of fibrosing steatohepatitis during injury, whereas macrophages reduced fibrosing steatohepatitis in the recovery phase of liver injury. Increasing anti-fibrotic macrophages and decreasing pro-fibrotic macrophages are promising approaches for fibrosing steatohepatitis. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Células Estrelladas Hepáticas/metabolismo , Macrófagos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/inmunología , Animales , Biomarcadores/metabolismo , Estudios de Casos y Controles , Proliferación Celular , Chaperón BiP del Retículo Endoplásmico , Células Estrelladas Hepáticas/patología , Humanos , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología
4.
Theranostics ; 7(17): 4192-4203, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29158819

RESUMEN

Mitochondrial dysfunction plays a crucial role in the development of non-alcoholic steatohepatitis (NASH). However, the regulator of mitochondrial dysfunction in the pathogenesis of NASH is still largely unclear. CXCR3 is an essential pro-inflammatory factor in chronic liver diseases. We explored the significance of CXCR3 in regulating mitochondrial function during NASH development in animal models and cultured hepatocytes. METHODS: The effects of CXCR3 on mitochondrial function were evaluated by genetic knockout or pharmacological inhibition in mouse models and in vitro. The ultrastructural changes of mitochondria were assessed by transmission electron microscopy (TEM). Hepatic levels of mitochondrial reactive oxygen species (ROS), DNA damage, membrane potential and ATP were examined. RESULTS: CXCR3 ablation by genetic knockout or pharmacological inhibition in mice protected against NASH development by influencing mitochondrial function. Similarly, depletion of CXCR3 reduced steatohepatitis injury in cultured hepatocytes. TEM analysis revealed that liver mitochondrial integrity was much improved in CXCR3 knockout (CXCR3-/-) compared to wildtype (WT) mice. In agreement with this, impaired mitochondrial function was pronounced in WT mice compared to CXCR3-/- mice, evidenced by increased protein expression of dynamic-related protein-1 (DRP1) and fission-1 (FIS1) and decreased protein expression of mitofusin-1 (MFN1). Mitochondrial dysfunction was induced in AML-12 hepatocytes by methionine and choline deficient medium and in HepG2 cells by palmitic acid. The impaired mitochondrial function in both cell lines was evidenced by reduced membrane potential and ATP content, and by increased mitochondrial ROS accumulation and DNA damage. However, CXCR3 knockdown by siCXCR3 significantly diminished the mitochondrial dysfunction in both AML-12 and HepG2 hepatocytes. In addition, inhibition of CXCR3 by CXCR3 specific antagonists SCH546738 and AMG487 restored mitochondrial function and inhibited mitochondrial-dependent apoptosis in the liver of WT mice fed with methionine and choline deficient diet. CONCLUSION: CXCR3 induces mitochondrial dysfunction, which contributes to the pathogenesis of steatohepatitis. Pharmacologic blockade of CXCR3 prevents mitochondrial dysfunction and restores the severity of steatohepatitis, indicating a potential clinical impact for controlling the disease.


Asunto(s)
Hígado/metabolismo , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores CXCR3/metabolismo , Animales , Células Cultivadas , ADN Mitocondrial/metabolismo , ADN Mitocondrial/ultraestructura , Citometría de Flujo , Células Hep G2 , Humanos , Hígado/patología , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Mitocondrias/ultraestructura , Especies Reactivas de Oxígeno/metabolismo , Receptores CXCR3/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...