Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 13(23)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28440043

RESUMEN

Long microchannels with thin walls, small width, and nanoholes or irregular shaped microgaps, which are similar to capillaries or cancerous vessels, are urgently needed to simulate the physiological activities in human body. However, the fabrication of such channels remains challenging. Here, microchannels with designable holes are manufactured by combining laser printing with line-contact capillary-force assembly. Two microwalls are first printed by femtosecond laser direct-writing, and subsequently driven to collapse into a channel by the capillary force that arises in the evaporation of developer. The channel can remain stable in solvent due to the enhanced Van der Waals' force caused by the line-contact of microwalls. Microchannels with controllable nanoholes and almost arbitrary patterns can be fabricated without any bonding or multistep processes. As-prepared microchannels, with wall thicknesses less than 1 µm, widths less than 3 µm, lengths more than 1 mm, are comparable with human capillaries. In addition, the prepared channels also exhibit the ability to steer the flow of liquid without any external pump.

2.
Sci Rep ; 6: 19989, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26818119

RESUMEN

High efficiency fabrication and integration of three-dimension (3D) functional devices in Lab-on-a-chip systems are crucial for microfluidic applications. Here, a spatial light modulator (SLM)-based multifoci parallel femtosecond laser scanning technology was proposed to integrate microstructures inside a given 'Y' shape microchannel. The key novelty of our approach lies on rapidly integrating 3D microdevices inside a microchip for the first time, which significantly reduces the fabrication time. The high quality integration of various 2D-3D microstructures was ensured by quantitatively optimizing the experimental conditions including prebaking time, laser power and developing time. To verify the designable and versatile capability of this method for integrating functional 3D microdevices in microchannel, a series of microfilters with adjustable pore sizes from 12.2 µm to 6.7 µm were fabricated to demonstrate selective filtering of the polystyrene (PS) particles and cancer cells with different sizes. The filter can be cleaned by reversing the flow and reused for many times. This technology will advance the fabrication technique of 3D integrated microfluidic and optofluidic chips.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...