Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 3946, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37402740

RESUMEN

Spatial organization of DNA is facilitated by cohesin protein complexes that move on DNA and extrude DNA loops. How cohesin works mechanistically as a molecular machine is poorly understood. Here, we measure mechanical forces generated by conformational changes in single cohesin molecules. We show that bending of SMC coiled coils is driven by random thermal fluctuations leading to a ~32 nm head-hinge displacement that resists forces up to 1 pN; ATPase head engagement occurs in a single step of ~10 nm and is driven by an ATP dependent head-head movement, resisting forces up to 15 pN. Our molecular dynamic simulations show that the energy of head engagement can be stored in a mechanically strained conformation of NIPBL and released during disengagement. These findings reveal how single cohesin molecules generate force by two distinct mechanisms. We present a model, which proposes how this ability may power different aspects of cohesin-DNA interaction.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Ciclo Celular/metabolismo , ADN , Adenosina Trifosfatasas/metabolismo , Cohesinas
2.
Sci Rep ; 9(1): 6171, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30992467

RESUMEN

Aberrant expression, dysfunction and particularly aggregation of a group of RNA-binding proteins, including TDP-43, FUS and RBM45, are associated with neurological disorders. These three disease-linked RNA-binding proteins all contain at least one RNA recognition motif (RRM). However, it is not clear if these RRMs contribute to their aggregation-prone character. Here, we compare the biophysical and fibril formation properties of five RRMs from disease-linked RNA-binding proteins and five RRMs from non-disease-associated proteins to determine if disease-linked RRMs share specific features making them prone to self-assembly. We found that most of the disease-linked RRMs exhibit reversible thermal unfolding and refolding, and have a slightly lower average thermal melting point compared to that of normal RRMs. The full domain of TDP-43 RRM1 and FUS RRM, as well as the ß-peptides from these two RRMs, could self-assemble into fibril-like aggregates which are amyloids of parallel ß-sheets as verified by X-ray diffraction and FT-IR spectroscopy. Our results suggest that some disease-linked RRMs indeed play important roles in amyloid formation and shed light on why RNA-binding proteins with RRMs are frequently identified in the cellular inclusions of neurodegenerative diseases.


Asunto(s)
Amiloide/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Amiloide/química , Amiloide/ultraestructura , Proteínas de Unión al ADN/química , Humanos , Proteínas del Tejido Nervioso/química , Agregado de Proteínas , Desplegamiento Proteico , Motivo de Reconocimiento de ARN , Proteína FUS de Unión a ARN/química , Proteínas de Unión al ARN/química , Temperatura
3.
RNA ; 25(6): 737-746, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30926754

RESUMEN

Human RNA exoribonuclease 2 (Rexo2) is an evolutionarily conserved 3'-to-5' DEDDh-family exonuclease located primarily in mitochondria. Rexo2 degrades small RNA oligonucleotides of <5 nucleotides (nanoRNA) in a way similar to Escherichia coli Oligoribonuclease (ORN), suggesting that it plays a role in RNA turnover in mitochondria. However, how Rexo2 preferentially binds and degrades nanoRNA remains elusive. Here, we show that Rexo2 binds small RNA and DNA oligonucleotides with the highest affinity, and it is most robust in degrading small nanoRNA into mononucleotides in the presence of magnesium ions. We further determined three crystal structures of Rexo2 in complex with single-stranded RNA or DNA at resolutions of 1.8-2.2 Å. Rexo2 forms a homodimer and interacts mainly with the last two 3'-end nucleobases of substrates by hydrophobic and π-π stacking interactions via Leu53, Trp96, and Tyr164, signifying its preference in binding and degrading short oligonucleotides without sequence specificity. Crystal structure of Rexo2 is highly similar to that of the RNA-degrading enzyme ORN, revealing a two-magnesium-ion-dependent hydrolysis mechanism. This study thus provides the molecular basis for human Rexo2, showing how it binds and degrades nanoRNA into nucleoside monophosphates and plays a crucial role in RNA salvage pathways in mammalian mitochondria.


Asunto(s)
Proteínas 14-3-3/química , Biomarcadores de Tumor/química , ADN de Cadena Simple/química , Exorribonucleasas/química , Magnesio/química , Proteínas Mitocondriales/química , Oligorribonucleótidos/química , ARN/química , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Sitios de Unión , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Cationes Bivalentes , Clonación Molecular , Cristalografía por Rayos X , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Magnesio/metabolismo , Mitocondrias/química , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Oligorribonucleótidos/genética , Oligorribonucleótidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , ARN/genética , ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Nucleic Acids Res ; 46(16): 8630-8640, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30020492

RESUMEN

Human polynucleotide phosphorylase (PNPase) is an evolutionarily conserved 3'-to-5' exoribonuclease principally located in mitochondria where it is responsible for RNA turnover and import. Mutations in PNPase impair structured RNA transport into mitochondria, resulting in mitochondrial dysfunction and disease. PNPase is a trimeric protein with a doughnut-shaped structure hosting a central channel for single-stranded RNA binding and degradation. Here, we show that the disease-linked human PNPase mutants, Q387R and E475G, form dimers, not trimers, and have significantly lower RNA binding and degradation activities compared to wild-type trimeric PNPase. Moreover, S1 domain-truncated PNPase binds single-stranded RNA but not the stem-loop signature motif of imported structured RNA, suggesting that the S1 domain is responsible for binding structured RNAs. We further determined the crystal structure of dimeric PNPase at a resolution of 2.8 Å and, combined with small-angle X-ray scattering, show that the RNA-binding K homology and S1 domains are relatively inaccessible in the dimeric assembly. Taken together, these results show that mutations at the interface of the trimeric PNPase tend to produce a dimeric protein with destructive RNA-binding surfaces, thus impairing both of its RNA import and degradation activities and leading to mitochondria disorders.


Asunto(s)
Mutación con Pérdida de Función , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Mutación Missense , Mutación Puntual , Polirribonucleótido Nucleotidiltransferasa/química , Estabilidad del ARN , ARN/metabolismo , Transporte Biológico , Cristalografía por Rayos X , Dimerización , Humanos , Secuencias Invertidas Repetidas , Enfermedades Mitocondriales/enzimología , Modelos Moleculares , Polirribonucleótido Nucleotidiltransferasa/genética , Unión Proteica , Conformación Proteica , Dominios Proteicos , ARN/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Dispersión del Ángulo Pequeño
5.
PLoS Biol ; 16(5): e2005653, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29734329

RESUMEN

Three prime repair exonuclease 1 (TREX1) is an essential exonuclease in mammalian cells, and numerous in vivo and in vitro data evidenced its participation in immunity regulation and in genotoxicity remediation. In these very complicated cellular functions, the molecular mechanisms by which duplex DNA substrates are processed are mostly elusive because of the lack of structure information. Here, we report multiple crystal structures of TREX1 complexed with various substrates to provide the structure basis for overhang excision and terminal unwinding of DNA duplexes. The substrates were designed to mimic the intermediate structural DNAs involved in various repair pathways. The results showed that the Leu24-Pro25-Ser26 cluster of TREX1 served to cap the nonscissile 5'-end of the DNA for precise removal of the short 3'-overhang in L- and Y-structural DNA or to wedge into the double-stranded region for further digestion along the duplex. Biochemical assays were also conducted to demonstrate that TREX1 can indeed degrade double-stranded DNA (dsDNA) to a full extent. Overall, this study provided unprecedented knowledge at the molecular level on the enzymatic substrate processing involved in prevention of immune activation and in responses to genotoxic stresses. For example, Arg128, whose mutation in TREX1 was linked to a disease state, were shown to exhibit consistent interaction patterns with the nonscissile strand in all of the structures we solved. Such structure basis is expected to play an indispensable role in elucidating the functional activities of TREX1 at the cellular level and in vivo.


Asunto(s)
Reparación del ADN , ADN de Cadena Simple/metabolismo , Exodesoxirribonucleasas/metabolismo , Fosfoproteínas/metabolismo , Animales , Ratones
6.
Nucleic Acids Res ; 45(20): 12015-12024, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29036353

RESUMEN

RNase R is a conserved exoribonuclease in the RNase II family that primarily participates in RNA decay in all kingdoms of life. RNase R degrades duplex RNA with a 3' overhang, suggesting that it has RNA unwinding activity in addition to its 3'-to-5' exoribonuclease activity. However, how RNase R coordinates RNA binding with unwinding to degrade RNA remains elusive. Here, we report the crystal structure of a truncated form of Escherichia coli RNase R (residues 87-725) at a resolution of 1.85 Å. Structural comparisons with other RNase II family proteins reveal two open RNA-binding channels in RNase R and suggest a tri-helix 'wedge' region in the RNB domain that may induce RNA unwinding. We constructed two tri-helix wedge mutants and they indeed lost their RNA unwinding but not RNA binding or degrading activities. Our results suggest that the duplex RNA with an overhang is bound in the two RNA-binding channels in RNase R. The 3' overhang is threaded into the active site and the duplex RNA is unwound upon reaching the wedge region during RNA degradation. Thus, RNase R is a proficient enzyme, capable of concurrently binding, unwinding and degrading structured RNA in a highly processive manner during RNA decay.


Asunto(s)
Proteínas de Escherichia coli/química , Exorribonucleasas/química , Conformación de Ácido Nucleico , Dominios Proteicos , ARN Bacteriano/química , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Cinética , Modelos Moleculares , Mutación , Unión Proteica , División del ARN , Estabilidad del ARN , ARN Bacteriano/genética , ARN Bacteriano/metabolismo
7.
J Med Chem ; 59(17): 8019-29, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27529560

RESUMEN

The DEDDh family of exonucleases plays essential roles in DNA and RNA metabolism in all kingdoms of life. Several viral and human DEDDh exonucleases can serve as antiviral drug targets due to their critical roles in virus replication. Here using RNase T and CRN-4 as the model systems, we identify potential inhibitors for DEDDh exonucleases. We further show that two of the inhibitors, ATA and PV6R, indeed inhibit the exonuclease activity of the viral protein NP exonuclease of Lassa fever virus in vitro. Moreover, we determine the crystal structure of CRN-4 in complex with MES that reveals a unique inhibition mechanism by inducing the general base His179 to shift out of the active site. Our results not only provide the structural basis for the inhibition mechanism but also suggest potential lead inhibitors for the DEDDh exonucleases that may pave the way for designing nuclease inhibitors for biochemical and biomedical applications.


Asunto(s)
Ácidos Alcanesulfónicos/química , Exonucleasas/antagonistas & inhibidores , Morfolinas/química , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/química , Dominio Catalítico , Cristalografía por Rayos X , ADN de Cadena Simple/química , Endodesoxirribonucleasas/antagonistas & inhibidores , Endodesoxirribonucleasas/química , Exonucleasas/química , Exorribonucleasas/antagonistas & inhibidores , Exorribonucleasas/química , Virus Lassa/enzimología , Simulación del Acoplamiento Molecular , Estructura Molecular , ARN/química , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA