Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Ying Yong Sheng Tai Xue Bao ; 35(1): 229-236, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38511460

RESUMEN

Antibiotic resistance genes (ARGs) have attracted widespread attention as a new global pollutant, mainly due to the abuse of antibiotics. To investigate the diversity of ARGs in three rodent species, we used metagenomic sequencing analysis to analyze the diversity of antibiotic resistance genes of 17 individuals of Apodemus peninsulae and 17 individuals of Myodes rufocanus collected from Mudanfeng, and nine individuals of Apodemus agrarius collected from Sandaoguan. A total of 19 types and 248 subclasses of ARGs were detected in the three rodent species. Seven ARGs showed significant difference and five ARGs showed extremely significant difference between M. rufocanus and A. agrarius. Seven ARGs showed significant difference and four ARGs showed extremely significant difference between A. peninsulae and A. agrarius. Four ARGs showed significant difference and five ARGs showed extremely significant difference between M. rufocanus and A. peninsulae. ARGs showing high abundance in three rodents were macrolides, lincoamides, tetracyclines, and ß-lactams. ARGs were widely distributed in the three rodent species. The significant differences in ARGs among different species might be due to the different distribution areas and their diet differentiation. The study could provide a basis for further studies of ARGs in mice and improve the understanding of the harm of ARGs transmission.


Asunto(s)
Antibacterianos , Murinae , Animales , Ratones , Antibacterianos/farmacología , Murinae/genética , Farmacorresistencia Microbiana/genética , Genes Bacterianos
2.
BMC Genomics ; 24(1): 645, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891474

RESUMEN

Takifugu fasciatus is an aquaculture species with high economic value. In recent years, problems such as environmental pollution and inbreeding have caused a serious decline in T. fasciatus germplasm resources. In this study, a high-density genetic linkage map was constructed by whole-genome resequencing. The map consists of 4891 bin markers distributed across 22 linkage groups (LGs), with a total genetic coverage of 2381.353 cM and a mean density of 0.535 cM. Quantitative trait locus (QTL) localization analysis showed that a total of 19 QTLs associated with growth traits of T. fasciatus in the genome-wide significance threshold range, distributed on 11 LGs. In addition, 11 QTLs associated with cold tolerance traits were identified, each scattered on a different LG. Furthermore, we used QTL localization analysis to screen out three candidate genes (IGF1, IGF2, ADGRB) related to growth in T. fasciatus. Meanwhile, we screened three candidate genes (HSP90, HSP70, and HMGB1) related to T. fasciatus cold tolerance. Our study can provide a theoretical basis for the selection and breeding of cold-tolerant or fast-growing T. fasciatus.


Asunto(s)
Sitios de Carácter Cuantitativo , Takifugu , Animales , Takifugu/genética , Mapeo Cromosómico , Fenotipo , Ligamiento Genético , Polimorfismo de Nucleótido Simple
3.
Bioorg Chem ; 141: 106842, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37769523

RESUMEN

Ubiquitin-specific protease 22 (USP22) plays a prominent role in tumor development, invasion, metastasis and immune reprogramming, which has been proposed as a potential therapeutic target for cancer. Herein, we employed a structure-based discovery and biological evaluation and discovered that Rottlerin (IC50 = 2.53 µM) and Morusin (IC50 = 8.29 µM) and as selective and potent USP22 inhibitors. Treatment of HCT116 cells and A375 cells with each of the two compounds resulted in increased monoubiquitination of histones H2A and H2B, as well as reduced protein expression levels of Sirt1 and PD-L1, all of which are known as USP22 substrates. Additionally, our study demonstrated that the administration of Rottlerin or Morusin resulted in an increase H2Bub levels, while simultaneously reducing the expression of Sirt1 and PD-L1 in a manner dependent on USP22. Furthermore, Rottlerin and Morusin were found to enhance the degradation of PD-L1 and Sirt1, as well as increase the polyubiquitination of endogenous PD-L1 and Sirt1 in HCT116 cells. Moreover, in an in vivo syngeneic tumor model, Rottlerin and Morusin exhibited potent antitumor activity, which was accompanied by an enhanced infiltration of T cells into the tumor tissues. Using in-depth molecular dynamics (MD) and binding free energy calculation, conserved residue Leu475 and non-conserved residue Arg419 were proven to be crucial for the binding affinity and inhibitory function of USP22 inhibitors. In summary, our study established a highly efficient approach for USP22-specific inhibitor discovery, which lead to identification of two selective and potent USP22 inhibitors as potential drugs in anticancer therapy.


Asunto(s)
Antígeno B7-H1 , Sirtuina 1 , Humanos , Sirtuina 1/metabolismo , Benzopiranos , Bioensayo
4.
Artículo en Inglés | MEDLINE | ID: mdl-37683358

RESUMEN

Temperature is a critical factor that regulates the reproduction processes in teleost. However, the gonadal response mechanism to cold stress in fish remains largely unknown. In the present study, female zebrafish were exposed to different extents of low temperatures at 18 °C and 10 °C for 48 h. The ovarian histology was remarkably damaged after cold stress exposure. Integrated analysis of miRNA-mRNA was used to investigate the ovarian response to acute cold stress. A large number of mRNAs and miRNAs were altered by cold stress, which are involved in extensive biological processes. It is indicated that the signal transduction of MAPK and Calcium signaling pathway is highly engaged in zebrafish ovary to adapt to cold stress. The immune system was dysregulated by cold stress while the ovarian autophagy was activated. Remarkably increased gene number related to reproductive functions was identified in the cold stress at 10 °C compared to the control. The cold stress-induced dysregulated reproductive genes include star, hsd3b1, hsd17b1, inha, insl3, amh, nanos1 and foxl2. Combined with the dysregulated insulin, IGF and progesterone signaling, it is suggested that cold stress affects ovarian function in multiple aspects, including oocyte meiosis, folliculogenesis, final maturation and ovarian maintenance. On the other hand, the ovarian miRNA-mRNA regulatory network response to cold stress was also constructed. Overall, our result revealed the ovarian response to cold stress in zebrafish and provided insight into the fish adaptation mechanism to acute temperature change.


Asunto(s)
MicroARNs , Pez Cebra , Femenino , Animales , Pez Cebra/metabolismo , MicroARNs/genética , Respuesta al Choque por Frío , ARN Mensajero/genética , Frío
5.
Aquat Toxicol ; 261: 106634, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37453186

RESUMEN

Copper (Cu) pollution in aquaculture water has seriously threatened the healthy and sustainable development of the aquaculture industry. Recently, many researchers have studied the toxic effects of Cu exposure on fish. However, the relationship between endoplasmic reticulum stress (ERS) and the inflammatory response, as well as its possible mechanisms, remain unclear. Particularly, information related to fish intestines must be expanded. Our study initially investigated the mechanisms underlying intestinal toxicity and inflammation resulting from Cu-induced ERS in vivo and in vitro in Takifugu fasciatus. In vivo study, T. fasciatus were treated with different concentrations (control, 20, and 100 µg/L) of Cu exposure for 28 days, causing intestinal oxidative stress, ERS, inflammatory responses, and histopathological and ultrastructural damage. Transcriptomic data further showed that Cu exposure caused ERS, as well as inflammatory responses, in the intestinal tracts of T. fasciatus. In vitro experiments on the intestinal cells of T. fasciatus showed that Cu exposure treatment (7.5 µg/mL) for 24 h induced ERS and increased mitochondrial numbers and inflammatory responses. In contrast, the addition of 4-phenylbutyric acid (4-PBA) alleviated ERS and inflammatory response in the Cu-exposed group. Furthermore, the reactive oxygen species (ROS) inhibitor, N-Acetyl-l-cysteine (NAC), effectively alleviated Cu-induced ERS. In conclusion, our in vivo and in vitro studies have confirmed that oxidative stress triggers the ERS pathway, which is involved in the intestinal inflammatory response. Our study provides new insights into the relationship among Cu-induced oxidative stress, ERS, and inflammatory responses in fish, as well as for the healthy culture of fish in aqueous environments.


Asunto(s)
Cobre , Estrés del Retículo Endoplásmico , Takifugu , Contaminantes Químicos del Agua , Animales , Apoptosis , Cobre/toxicidad , Cobre/metabolismo , Inflamación/inducido químicamente , Estrés Oxidativo , Contaminantes Químicos del Agua/toxicidad
6.
Biochem Biophys Res Commun ; 675: 155-161, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37473530

RESUMEN

Acute myeloid leukemia (AML) is a heterogeneous disease and about one third of AML patients carry nucleophosmin (NPM1) mutation. Because 95% mutations give NPM1 an additional nuclear export signaling (NES) and dislocate NPM1 in cytoplasm (NPMc+), relocating NPM1 in nucleus provide an innovative strategy for treating this type of AML. The nuclear export of NPM1 depends on the nuclear protein export receptor XPO1, which recognizes the NES sequence on NPM1. Homoharringtonine (HHT) is a first-line chemotherapy drug of AML, yet the exact mechanism of its anti-AML activity is elusive. In this study, we found that HHT can directly target XPO1 to its NES-binding cleft, bind to Cys528 of XPO1, and inhibits its nuclear transport function. In addition, HHT can block NPMc+ proteins nuclear export and thus make NPMc+ AML cells much more sensitive to HHT treatment. Furthermore, the sensitivity of NPMc+ AML cells to HHT is a universal phenomenon irrespective of the different genetic lesions of AML. Taken together, our findings suggest that XPO1 is a new target of HHT and provide a novel strategy for NPMc+ AML treatment.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Homoharringtonina , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Mutación
7.
J Hazard Mater ; 457: 131719, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37257385

RESUMEN

This study evaluated the effects of chronic exposure to copper nanoparticles (Cu-NPs) and waterborne copper (CuSO4) on the reproductive system of yellow catfish (Pelteobagrus fulvidraco). Juvenile yellow catfish were exposed to 100 and 200 µg Cu/L Cu-NPs and 100 µg Cu/L CuSO4 for 42 days. The results showed clear reproductive defects in both female and male yellow catfish in the 200 µg Cu/L Cu-NPs and 100 µg Cu/L CuSO4 groups. Exposure to Cu-NPs or CuSO4 inhibited folliculogenesis and vitellogenesis in the ovaries, and spermatogenesis in the testes, accompanied by elevation of the apoptotic signal. Ultrastructural observations also revealed damaged organelles of gonadal cells in both testes and ovaries. Most of the hypothalamic-pituitary-gonadal (HPG) axis genes examined and serum sex steroid hormones tended to be downregulated after Cu exposure. Metabolomic analysis suggested that gonadal estradiol level is sensitive to Cu-NPs or CuSO4. The heat map of gonadal metabolomics suggested a similar effect of 200 µg Cu/L Cu-NPs and 100 µg Cu/L CuSO4 in both the ovaries and testes. Additionally, metabolomics data showed that the reproductive toxicity due to Cu-NPs and CuSO4 may occur via different metabolic pathways. Cu-NPs tend to dysregulate the metabolic pathways of sphingolipid and linoleic acid metabolism in the ovary and the biosynthesis of amino acids and pantothenate and CoA in the testis. Overall, these findings revealed the toxicological effects of Cu-NPs and CuSO4 on the HPG axis and gonadal metabolism in yellow catfish.


Asunto(s)
Bagres , Nanopartículas , Animales , Femenino , Masculino , Cobre/química , Sulfato de Cobre , Eje Hipotálamico-Pituitario-Gonadal , Nanopartículas/toxicidad , Bagres/genética , Bagres/metabolismo
8.
Front Cardiovasc Med ; 10: 1157163, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37139122

RESUMEN

Aims: We aim to examine the association of estimated pulse wave velocity (ePWV) with all-cause and cardiovascular mortality in patients with diabetes. Methods: All of adult participants with diabetes from the National Health and Nutrition Examination Survey (NHANES) (1999-2018) were enrolled. ePWV was calculated according to the previously published equation based on age and mean blood pressure. The mortality information was obtained from the National Death Index database. Weighted Kaplan-Meier (KM) plot and weighted multivariable Cox regression was used to investigate the association of ePWV with all-cause and cardiovascular mortality risks. Restricted cubic spline was adopted to visualize the relationship between ePWV and mortality risks. Results: 8,916 participants with diabetes were included in this study and the median follow-up duration was ten years. The mean age of study population was 59.0 ± 11.6 years, 51.3% of the participants were male, representing 27.4 million patients with diabetes in weighted analysis. The increment of ePWV was closely associated with increased risks of all-cause mortality (HR: 1.46, 95% CI: 1.42-1.51) and cardiovascular mortality (HR: 1.59, 95% CI: 1.50-1.68). After adjusting for cofounding factors, for every 1 m/s increase in ePWV, there was a 43% increased risk of all-cause mortality (HR: 1.43, 95% CI: 1.38-1.47) and 58% increased of cardiovascular mortality (HR: 1.58, 95% CI: 1.50-1.68). ePWV had positive linear associations with all-cause and cardiovascular mortality. KM plots also showed that the risks of all-cause and cardiovascular mortality were significantly elevated in patients with higher ePWV. Conclusions: ePWV had a close association with all-cause and cardiovascular mortality risks in patients with diabetes.

9.
Discov Nano ; 18(1): 30, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36862234

RESUMEN

Carbon dots (CDs) or CDs/polymer composites have been applied in numerous fields. Here, novel CDs were synthesized by carbonization of egg yolk, and characterized by TEM, FTIR, XPS and photoluminescence spectra. The CDs were found to be approximate sphere in shape with an average size of 4.46 ± 1.17 nm, and emitted bright blue photoluminescence under UV irradiation. The photoluminescence of CDs was found selectively quenched by Fe3+ in a linear manner in the range of 0.05-0.45 mM, meaning they could be applied for Fe3+ detection in solution. Moreover, the CDs could be uptaken by HepG2 cells to exhibit bright blue photoluminescence. The intensity could reflect the level of intracellular Fe3+, indicating they could be further used for cell imaging and intracellular Fe3+ monitoring. Next, dopamine was polymerized on the surface of CDs to obtain the polydopamine (PDA)-coated CDs (CDs@PDA). We found PDA coating could quench the photoluminescence of CDs via inner filter effect, and the degree of quenching was linearly related to the logarithm of DA concentration (Log CDA). Also, the selectivity experiment indicated the method had a high selectivity for DA over a number of possible interfering species. This indicated the CDs in combination with Tris buffer could be potentially applied as the assay kit of dopamine. At last, the CDs@PDA exhibited excellent photothermal conversion capability, and they could efficiently kill HepG2 cells under NIR laser irradiation. Overall, the CDs and CDs@PDA in this work exhibited many excellent advantages, and could be potentially used for multi-applications, such as Fe3+ sensor in solution and cellular, cell imaging, dopamine assay kit, as well as photothermal agents for cancer therapy.

10.
Bioresour Bioprocess ; 10(1): 10, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38647817

RESUMEN

Nicotine, a toxic and addictive alkaloid from tobacco, is an environmental pollutant. However, nicotine-degrading bacteria (NDB) and their function in tobacco planting soil are not fully understood. First, 52 NDB strains belonging to seven genera were isolated from tobacco soil. The most dominant genera were Flavobacterium (36.5%), Pseudomonas (30.8%), and Arthrobacter (15.4%), and Chitinophaga and Flavobacterium have not been previously reported. Then, two efficient NDB strains, Arthrobacter nitrophenolicus ND6 and Stenotrophomonas geniculata ND16, were screened and inoculated in the compost fertilizer from tobacco waste. The nicotine concentrations were reduced from 1.5 mg/g (DW) to below the safety threshold of 0.5 mg/g. Furthermore, strain ND6 followed the pyridine pathway of nicotine degradation, but the degrading pathway in strain ND16 could not be determined according to genomic analysis and color change. Finally, the abundance of nicotine-degrading genes in tobacco rhizosphere soil was investigated via metagenomic analysis. Five key genes, ndhA, nctB, kdhL, nboR, and dhponh, represent the whole process of nicotine degradation, and their abundance positively correlated with soil nicotine concentrations (p < 0.05). In conclusion, various NDB including unknown species live in tobacco soil and degrade nicotine efficiently. Some key nicotine-degrading genes could be used in monitoring nicotine degradation in the environment. The fermentation of compost from tobacco waste is a promising application of efficient NDB.

11.
Sci Adv ; 8(47): eabo4116, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36427305

RESUMEN

The tumor microenvironment (TME) enhances regulatory T (Treg) cell stability and immunosuppressive functions through up-regulation of lineage transcription factor Foxp3, a phenomenon known as Treg fitness or adaptation. Here, we characterize previously unknown TME-specific cellular and molecular mechanisms underlying Treg fitness. We demonstrate that TME-specific stressors including transforming growth factor-ß (TGF-ß), hypoxia, and nutrient deprivation selectively induce two Foxp3-specific deubiquitinases, ubiquitin-specific peptidase 22 (Usp22) and Usp21, by regulating TGF-ß, HIF, and mTOR signaling, respectively, to maintain Treg fitness. Simultaneous deletion of both USPs in Treg cells largely diminishes TME-induced Foxp3 up-regulation, alters Treg metabolic signatures, impairs Treg-suppressive function, and alleviates Treg suppression on cytotoxic CD8+ T cells. Furthermore, we developed the first Usp22-specific small-molecule inhibitor, which dramatically reduced intratumoral Treg Foxp3 expression and consequently enhanced antitumor immunity. Our findings unveil previously unappreciated mechanisms underlying Treg fitness and identify Usp22 as an antitumor therapeutic target that inhibits Treg adaptability in the TME.


Asunto(s)
Factores de Transcripción Forkhead , Microambiente Tumoral , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Linfocitos T CD8-positivos/metabolismo , Linfocitos T Reguladores , Factor de Crecimiento Transformador beta/metabolismo
12.
Cell Biol Int ; 46(11): 1801-1813, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35925004

RESUMEN

Oleanolic acid (OA) and its derivatives show potent anticancer function. Pancreatic cancer (PC) is the fourth core motive of cancer-related deaths worldwide. Epidermal growth factor receptor (EGFR) has been implicated in PC and has been validated as a therapeutic target. Our study demonstrated that K73-03, an OA derivative, was identified as a potent inhibitor of EGFR by using reverse pharmacophore screening and molecular dynamics simulation assays. Moreover, Western blot analysis showed that K73-03 markedly suppressed the levels of phosphorylated-EGFR (p-EGFR) and phosphorylated-Akt (p-Akt). The inhibitory effect of K73-03 on PC cells was assessed in vitro and in vivo. Mechanistically, K73-03 effectively inhibited the cell proliferation of PC cells, and induced apoptosis and autophagy of ASPC-1 cells in a dose-dependent manner. Additionally, pretreatment with chloroquine, an autophagy inhibitor, significantly inhibited K73-03-induced autophagy and enhanced K73-03-induced apoptotic cell death. K73-03 also strongly repressed ASPC-1 cells xenograft growth in vivo. Thus, all these findings provided new clues about OA analog K73-03 as an effective anticancer agent targeted EGFR against ASPC-1 cells, it is worth further evaluation in the future.


Asunto(s)
Antineoplásicos , Ácido Oleanólico , Neoplasias Pancreáticas , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Cloroquina/farmacología , Receptores ErbB/metabolismo , Humanos , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Neoplasias Pancreáticas
13.
Chem Biol Interact ; 365: 110028, 2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-35921947

RESUMEN

The chemotherapeutic drug Doxorubicin is the most commonly prescribed in the world. However, its clinical wide application is limited due to harmful side effects like cardiotoxicity. The cardiotoxic mechanism of DOX is not fully clear, however, it is considered as a potential etiological factor to the generation of ROS and Iron complexes, impairment, Ca2⁺homeostasis, mitochondrial dysfunction, and cell membrane damage. Moreover, it is generally believed that mitochondrial dysfunction plays a central role in the cardiotoxic effect of DOX. Additionally, SIRTs are considered to play an important role, which is activated by small energy molecules to generate energy by stimulation of transcription factors and enzymatic regulation of cardiac energy metabolism. In the heart tissue, SIRT1 and SIRT3 are present in large amounts. This review paper focuses on "DOX mediated cardiomyopathy & cardiomyocytes death" and "The modulation of mitochondrial processes by SIRT1, SIRT3, and DOX". This paper expounds from the following aspects, respectively. 1. A target to mitochondria; (1) ROS overproduction under mitochondrial dysfunction; (2) Lipid peroxidation by oxidative stress after ROS overproduction; (3) Disturbance of calcium homeostasis and mitochondrial permeability transition; 2. SIRTs participate in the process of cardiotoxicity; (1) SIRT1 and toxic myocardial injury; ①Over-expression of SIRT1 in toxic myocardial injury; ②SIRT1 mediated DOX-induced cardiotoxicity; (2) SIRT3 and mitochondrial damage; ①A central role of SIRT3 in cardiac metabolism; ② Role of SIRT3 in DOX-induced cardiotoxicity; This review is based on SIRTs mediated role in the regulation of mitochondrial function, and evaluates their role on DOX induced cardiotoxicity.


Asunto(s)
Sirtuina 3 , Sirtuinas , Antibióticos Antineoplásicos/farmacología , Cardiotoxicidad/metabolismo , Doxorrubicina/efectos adversos , Humanos , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 1/metabolismo , Sirtuina 3/metabolismo , Sirtuinas/metabolismo
14.
Biomed Pharmacother ; 148: 112785, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35272138

RESUMEN

Juglone (5 - hydroxy - 1, 4 - naphthalene diketone) is a kind of natural naphthoquinone, present in the roots, leaves, nut-hulls, bark and wood of walnut trees. Recent studies have found that Juglone has special significance in the treatment of cancer, which plays a significant role in the resistance of cancer cell proliferation, induction of cancer cell apoptosis, induction of autophagy, anti-angiogenesis and inhibition of cancer cell migration and invasion, etc. Additionally, its derivatives also play a tumor suppressive effect. In conclusion, Juglone and its derivatives have been identified as effective anticancer drugs. This paper reviews action mechanisms of Juglone and its derivatives in cancer treatment.


Asunto(s)
Peptidilprolil Isomerasa de Interacción con NIMA/antagonistas & inhibidores , Naftoquinonas/farmacología , Neoplasias/patología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/efectos de los fármacos , Humanos , Naftoquinonas/química , Neovascularización Patológica , Especies Reactivas de Oxígeno
16.
Cell Biol Toxicol ; 38(3): 531-551, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34455488

RESUMEN

Diabetes mellitus (DM) is a metabolic syndrome, caused by insufficient insulin secretion or insulin resistance (IR). DM enhances oxidative stress and induces mitochondrial function in different kinds of cell types, including pancreatic ß-cells. Our previous study has showed phosphocreatine (PCr) can advance the mitochondrial function through enhancing the oxidative phosphorylation and electron transport ability in mitochondria damaged by methylglyoxal (MG). Our aim was to explore the potential role of PCr as a molecule to protect mitochondria from diabetes-induced pancreatic ß-cell injury with insulin secretion deficiency or IR through dual AKT/IRS-1/GSK-3ß and STAT3/Cyclophilin D (Cyp-D) signaling pathways. MG-induced INS-1 cell viability, apoptosis, mitochondrial division and fusion, the morphology, and function of mitochondria were suppressed. Flow cytometry was used to detect the production of intracellular reactive oxygen species (ROS) and the changes of intracellular calcium, and the respiratory function was measured by oxygraph-2k. The expressions of AKT, IRS-1, GSK-3ß, STAT3, and Cyp-D were detected using Western blot. The result showed that the oxidative stress-related kinases were significantly restored to the normal level after the pretreatment with PCr. Moreover, PCr pretreatment significantly inhibited cell apoptosis, decreased intracellular calcium, and ROS production, and inhibited mitochondrial division and fusion, and increased ATP synthesis damaged by MG in INS-1 cells. In addition, pretreatment with PCr suppressed Cytochrome C, p-STAT3, and Cyp-D expressions, while increased p-AKT, p-IRS-1, p-GSK-3ß, caspase-3, and caspase-9 expressions. In conclusion, PCr has protective effect on INS-1 cells in vitro and in vivo, relying on AKT mediated STAT3/ Cyp-D pathway to inhibit oxidative stress and restore mitochondrial function, signifying that PCr might become an emerging candidate for the cure of diabetic pancreatic cancer ß-cell damage.


Asunto(s)
Calcio , Proteínas Proto-Oncogénicas c-akt , Apoptosis , Calcio/metabolismo , Peptidil-Prolil Isomerasa F , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/farmacología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Fosfocreatina/metabolismo , Fosfocreatina/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
19.
Acta Pharmaceutica Sinica ; (12): 1614-1620, 2022.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-929436

RESUMEN

Ferroptosis is a novel cell death mode proposed in recent years, which is characterized by intracellular iron-dependent lipid peroxidation. Its mechanisms include lipid peroxidation, iron accumulation and the imbalance of antioxidant system. The crosstalk between ferroptosis and asthma is gradually deepening. Elucidating the specific mechanism of ferroptosis in regulating asthma is helpful to broaden the understanding of the pathology of asthma. This paper expounds the role of ferroptosis in airway epithelial cells in the occurrence and development of asthma from three perspectives: lipid peroxidation, iron accumulation and the imbalance of antioxidant system, hoping to find new targets and strategies for asthma treatment.

20.
ACS Omega ; 6(34): 21925-21938, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34497888

RESUMEN

Wet dedusting is the main coal dust suppression technique in coal mines, and coal wettability is the main factor affecting dust suppression efficiency. To investigate the main factors affecting the coal wettability and improve it, the coal-water contact angle was used as an index to characterize the coal wettability, and the wettability of six coal samples with different metamorphic degree was studied by analyzing the relationship between the physicochemical properties and the contact angle. To improve the coal wettability, the nonionic surfactant alkyl polyglycoside (APG), anionic surfactant sodium dodecyl benzene sulfonate (SDBS), and polymer surfactant polyacrylamide (PAM) were applied to the coal samples. The results show that SDBS is the most effective surfactant to improve the coal wettability, followed by APG, while the application of PAM would lead to more hydrophobic coal. It is also found that the coal wettability shows a high-low-high trend with the increase in the metamorphic degree. The wettability of long flame coal is the strongest and that of gas coal is the weakest. Moisture is the main hydrophilic factor of coal, while 1,4-dimethylbenzene is the main hydrophobic factor. The main factors affecting the treatment effect of APG, SDBS, and PAM on wettability are the aromatic methylbenzene, hydroxyl, and hydroxyl content of coal, respectively. Therefore, according to the content of hydroxyl in different coals, an SDBS solution can be prepared to improve the coal wettability. For coal with a low hydroxyl content, a higher concentration SDBS solution could be needed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...