Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-36767787

RESUMEN

OBJECTIVE: This study aimed to compare the biomarker profile of pre-frail and frail adults in the UK Biobank cohort by sex. METHODS: In total, 202,537 participants (67.8% women, aged 37 to 73 years) were included in this cross-sectional analysis. Further, 31 biomarkers were investigated in this study. Frailty was defined using a modified version of the Frailty Phenotype. Multiple linear regression analyses were performed to explore the biomarker profile of pre-frail and frail individuals categorized by sex. RESULTS: Lower concentrations of apoA1, total, LDL, and HDL cholesterol, albumin, eGFRcys, vitamin D, total bilirubin, apoB, and testosterone (differences ranged from -0.30 to -0.02 per 1-SD change), as well as higher concentrations of triglycerides, GGT, cystatin C, CRP, ALP, and phosphate (differences ranged from 0.01 to 0.53 per 1-SD change), were identified both in pre-frail and frail men and women. However, some of the associations differed by sex. For instance, higher rheumatoid factor and urate concentrations were identified in pre-frail and frail women, while lower calcium, total protein, and IGF-1 concentrations were identified in pre-frail women and frail women and men. When the analyses were further adjusted for CRP, similar results were found. CONCLUSIONS: Several biomarkers were linked to pre-frailty and frailty. Nonetheless, some of the associations differed by sex. Our findings contribute to a broader understanding of the pathophysiology of frailty as currently defined.


Asunto(s)
Fragilidad , Humanos , Anciano , Femenino , Masculino , Anciano Frágil , Estudios Transversales , Bancos de Muestras Biológicas , Biomarcadores , Reino Unido
2.
Sci Rep ; 10(1): 11318, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32647368

RESUMEN

Labile organic carbon (LOC) fractions and related enzyme activities in soils are considered to be early and sensitive indicators of soil quality changes. We investigated the influences of fertilization and residue incorporation on LOC fractions, enzyme activities, and the carbon pool management index (CPMI) in a 10-year field experiment. The experiment was composed of three treatments: (1) no fertilization (control), (2) chemical fertilizer application alone (F), and (3) chemical fertilizer application combined with incorporation of wheat straw residues (F + R). Generally, the F + R treatment led to the highest concentrations of the LOC fractions. Compared to the control treatment, the F + R treatment markedly enhanced potential activities of cellulase (CL), ß-glucosidase (BG), lignin peroxidase (LiP), and manganese peroxidase (MnP), but decreased laccase (LA) potential activity. Partial least squares regression analysis suggested that BG and MnP activities had a positive impact on the light-fraction organic carbon (LFOC), permanganate-oxidizable carbon (POXC), and dissolved organic carbon (DOC) fractions, whereas laccase activity had a negative correlation with those fractions. In addition, the F + R treatment significantly increased the CPMI compared to the F and control treatments. These results indicated that combining fertilization with crop residues stimulates production of LOC and could be a useful approach for maintaining sustainable production capacity in lime concretion black soils along the Huai River region of China.

3.
J Agric Food Chem ; 68(9): 2607-2614, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32096642

RESUMEN

Fused-ring aromatics, important skeletal components of black carbon (BC), contribute to long-term carbon (C) sequestration in nature. They have previously been thought to be primarily formed by incomplete combustion of organic materials, whereas the nonpyrogenic origins are negligible. Using advanced solid-state 13C nuclear magnetic resonance (NMR), including recoupled long-range C-H dipolar dephasing, exchange with protonated and nonprotonated spectral editing (EXPANSE), and dipolar-dephased double-quantum/single-quantum (DQ/SQ) spectroscopy, we for the first time identify fused-ring aromatics that formed during the decomposition of wheat (Triticum sp.) straw in soil under aerobic, but not anaerobic conditions. The observed formation of polyaromatic units as plant litter decomposes provides direct evidence for humification. Moreover, the estimation of the annual flux of such nonpyrogenic BC could be equivalent to 3-12% of pyrogenic BC added to soils from all other sources. Our findings significantly extend the understanding of potential sources of fused-ring aromatic C and BC in soils as well as the global C cycle.


Asunto(s)
Triticum/química , Aerobiosis , Bacterias/metabolismo , Biodegradación Ambiental , Tallos de la Planta/química , Tallos de la Planta/microbiología , Microbiología del Suelo , Triticum/microbiología
4.
Sci Total Environ ; 692: 930-939, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31539997

RESUMEN

Much research has been devoted to investigating how water-extractable organic carbon (DOC) concentration and microbial activity regulate soil organic carbon (SOC) mineralization when soils are saturated with water. However, the relationships of DOC chemical structure and microbial community composition with SOC mineralization, as well as the relative contributions of microbial decomposers and their substrates on the mineralization rate have rarely been examined. In a laboratory experiment, we incubated two typical cropland soils (an Entisol and a Mollisol) of China for 360 days under submerged and non-submerged conditions, and we evaluated the concentration and chemical structure of soil DOC, soil microbial metabolic potential and community composition by using total C/N analysis, solution-state 1H NMR, Biolog EcoPlates, and 16S rRNA amplicon sequencing, respectively. The results showed that submergence significantly increased DOC concentration (P < 0.01) and microbial activity (P < 0.001) and changed DOC chemical structure in the Entisol (P < 0.01). In the Mollisol, it significantly increased the rate (P < 0.01) and cumulative extent (P < 0.001) of SOC mineralization and DOC concentration (P < 0.01) as well as altering the composition of the microbial community (P < 0.001). Moreover, the SOC mineralization rate was better explained by microbial community composition (Entisol: SPC = -0.71, P < 0.001; Mollisol: SPC = 0.92, P < 0.001) than by DOC concentration (Entisol: SPC = 0.21, P > 0.05; Mollisol: SPC = 0.30, P < 0.05) or DOC chemical structure (Entisol: SPC = 0.12, P > 0.05; Mollisol: SPC = -0.45, P < 0.001). Our study revealed that the bacterial community composition had a close relationship to the rate of submergence-induced SOC mineralization in both soils, but only DOC concentration and chemical structure were effective predictors of mineralization rate in the low-pH Mollisol.

5.
Sci Total Environ ; 692: 89-97, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31336305

RESUMEN

Reducing the applications of mineral phosphorus (P) fertilizers and supplementing them by organic fertilizers is becoming a necessary practice in the North China Plain due to overuse of mineral P fertilizers and improper disposal of organic wastes. Knowledge is needed about how the long-term substitution of mineral fertilizers by organic fertilizers affects soil P forms in order to understand soil P transformation and crop P uptake. In this study, we used solution 31P nuclear magnetic resonance (NMR) spectroscopy to characterize P forms in fluvo-aquic soil after 26 years of different fertilization management strategies, organic compost (OM), half compost in combination with half mineral fertilizer NPK (1/2 OM), mineral fertilizer NPK (NPK), mineral fertilizer NK (NK), and an unfertilized control (CK). Results showed that the P extraction efficiency using NaOH-EDTA varied from 13.0 to 27.7% for the soils of the treatments. 31P NMR spectra indicated that the majority of P was in the form of orthophosphate for all the treatments, which constituted 64.3-83.5% of the total extracted P. The application of P fertilizers significantly increased the concentrations of orthophosphate, monoesters and diesters regardless of the P fertilization method, although the proportions of monoesters and diesters were higher in CK. The proportions and concentrations of orthophosphate significantly decreased when all mineral fertilizers were replaced by compost. There was no significant difference in the proportions and concentrations of total organic P, corrected monoesters and diesters in NaOH-EDTA extracts of soils among NPK, 1/2OM and OM treatments. Decreasing mineral P fertilizers and partly replacing them by organic fertilizer in fluvo-aquic soil might increase soil test (Olsen) P and crop P uptake through the degradation of applied organic P forms.

6.
J Agric Food Chem ; 67(29): 8107-8118, 2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31260291

RESUMEN

Humic substances (HS) are vital to soil fertility and carbon sequestration. Using multiple cross-polarization/magic-angle spinning (multiCP/MAS) NMR combined with dipolar dephasing, we quantitatively characterized humic fractions, i.e., fulvic acid (FA), humic acid (HA), and humin (HM), isolated from two representative soils (upland and paddy soils) in China under six long-term (>20 years) fertilizer treatments. Results indicate that each humic fraction showed chemical distinction between the upland and paddy soils, especially with much greater aromaticity of upland HMs than of paddy HMs. Fertilizer treatment exerted greater influence on chemical natures of upland HS than of paddy HS, although the effect was less than that of soil type. Organic manure application especially decreased the percentages of aromatic C in the upland HAs and HMs compared with the control. We concluded that humic fractions responded in chemical nature to environmental conditions, i.e., soil type/cropping system/soil aeration and fertilizer treatments.


Asunto(s)
Sustancias Húmicas/análisis , Espectroscopía de Resonancia Magnética/métodos , Suelo/química , Carbono/análisis , China , Fertilizantes/análisis , Estiércol/análisis , Oryza/crecimiento & desarrollo , Oryza/metabolismo
7.
Environ Sci Technol ; 53(13): 7673-7682, 2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31244066

RESUMEN

Pyrogenic carbonaceous matter (PCM) is redox-active and promotes both abiotic and biotic reactions in the environment, possibly as a result of its conductivity and phenolic/quinone functional groups. However, due to the complexity of PCM, the contribution of conductivity or phenolic/quinone functional groups to its redox activity is poorly understood, which hinders its potential engineering applications. Here, we synthesized tunable conjugated microporous polymers (CMPs) that possess key properties of PCM, which can be used as PCM analogues to provide insights to PCM reactivity. Specifically, controlled incorporation of phenolic moieties into CMPs during polymer synthesis affected electron-donating capacity, while carbonization of CMPs at various temperatures altered conductivity. Both properties were then correlated with PCM reactivity measured by the decay kinetics of a model pollutant trichloronitromethane. We demonstrate that some of the prepared CMPs enabled transformation of trichloronitromethane, while no decay was observed in the absence of CMPs. Results of further investigation suggest that trichloronitromethane decay occurs by reductive dechlorination, suggesting that CMPs are electron donors and the first dissociative electron transfer from CMPs was likely to be the rate-limiting step. Conductivity but not electron-donating capacity was positively correlated with CMP-mediated trichloronitromethane decay kinetics, suggesting an important role of the electron transfer kinetics at the interface for PCM-mediated transformation of environmental pollutants.


Asunto(s)
Contaminantes Ambientales , Polímeros , Transporte de Electrón , Cinética , Oxidación-Reducción
8.
Environ Sci Technol ; 53(13): 7683-7693, 2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31244067

RESUMEN

The effects of the chemical structure, surface properties, and micropore of modified black carbon samples (BCs) on the sorption mechanism of hydrophobic organic contaminants (HOCs) are discussed. Activated and oxidized BCs were produced from a shale kerogen at 250-500 °C by chemical activation regents (KOH and ZnCl2) and then by oxidative regents (H2O2 and NaClO). The surface properties (water contact angel, Boehm titration, and cation exchange capacity, CEC), structural properties (advanced solid-state 13C NMR), micropore properties (CO2 adsorption), mesopore properties (N2 adsorption), and sorption and desorption properties of phenanthrene were obtained. The results showed that ZnCl2-activated BCs had higher basic surface groups, CEC values, aromatic carbon contents, micropore volumes, and adsorption volumes but exhibited lower acidic surface groups than the KOH-activated BCs did. Micropore modeling and sorption irreversibility indicated that the micropore filling was the main sorption mechanism of phenanthrene. In addition, ZnCl2 activated and NaClO oxidized BCs showed a nice regression equation between adsorption volumes and micropore volumes (CO2- V0) as follows: Q0' = 0.495 V0 + 6.28( R2 = 0.98, p < 0.001). Moreover, the contents of nonprotonated aromatic carbon, micropore volumes, and micropore sizes are the critical factors to micropore filling mechanism of phenanthrene on BCs. The size of fused aromatic rings was estimated from the recoupled 1H-13C dipolar dephasing, and the BC structural models at temperatures ranging from 300 to 500 were proposed. This finding improves our understanding of the sorption mechanism of HOCs from the perspectives of chemical structure and micropore properties.


Asunto(s)
Peróxido de Hidrógeno , Fenantrenos , Adsorción , Carbono , Hollín
9.
Sci Total Environ ; 625: 1065-1073, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29996403

RESUMEN

Crop straw incorporation is a useful approach for increasing the quantity and changing the chemical composition of soil organic matter (SOM). This process is influenced by soil aeration. The present study investigated the stability of whole SOM, particulate organic matter (POM) and mineral-associated organic matter (MinOM) fractions with wheat straw amendment under aerobic and anaerobic conditions over a 12-month incubation period. Solid-state nuclear magnetic resonance and Fourier transform infrared spectroscopy were used to analyze the chemical composition of whole SOM, POM and MinOM fractions. The decomposition rate of wheat straw was lower under anaerobic than under aerobic conditions (0.014 vs. 0.020day-1). Wheat straw incorporation increased the original soil organic carbon content (7.4g kg-1) under both aerobic (up to 10.2g·kg-1) and anaerobic (up to 10.3g·kg-1) conditions, but the content of mineral-associated organic carbon (MinOC) under aerobic condition (7.0g·kg-1) was significantly larger than that under anaerobic condition (4.9g·kg-1). The proportion of alkyl carbon (C) in SOM, POM and MinOM fractions was greater under anaerobic than under aerobic conditions, while the opposite was true for the proportion of O-alkyl C of SOM and POM and MinOM fractions. A/O-A indices (i.e., the ratio of alkyl C to O-alkyl C) of whole SOM, POM and MinOM were higher under anaerobic than under aerobic conditions. We conclude that wheat straw incorporation resulted in the enrichment of alkyl C in the POM and MinOM fractions under anaerobic conditions, and thus improved the stability of SOM. In this way, the decomposition of crop residue influenced SOM structural chemistry at the molecular level.

10.
J Sci Food Agric ; 98(12): 4509-4516, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29479715

RESUMEN

BACKGROUND: Elevated carbon dioxide (CO2 ) and nitrogen (N) availability can interactively promote cucumber yield, but how the yield increase is realized remains unclear, whilst the interactive effects on fruit quality are unknown. In this study, cucumber plants (Cucumis sativus L. cv. Jinmei No. 3) were grown in a paddy soil under three CO2 concentrations - 400 (ambient CO2 ), 800 (elevated CO2 , eCO2 ) and 1200 µmol mol-1 (super-elevated CO2 ) - and two N applications - 0.06 (low N) and 0.24 g N kg-1 soil (high N). RESULTS: Compared with ambient CO2 , eCO2 increased yield by 106% in high N but the increase in total biomass was only 33%. This can result from greater carbon translocation to fruits from other organs, indicated by the increased biomass allocation from stems and leaves, particularly source leaves, to fruits and the decreased concentrations of fructose and glucose in source leaves. Super-elevated CO2 reduced the carbon allocation to fruits thus yield increase (71%). Additionally, eCO2 also increased the concentrations of fructose and glucose in fruits, maintained the concentrations of dietary fiber, phosphorus, potassium, calcium, magnesium, sulfur, manganese, copper, molybdenum and sodium, whilst it decreased the concentrations of nitrate, protein, iron, and zinc in high N. Compared with eCO2 , super-elevated CO2 can still improve the fruit quality to some extent in low N availability. CONCLUSIONS: Elevated CO2 promotes cucumber yield largely by carbon allocation from source leaves to fruits in high N availability. Besides a dilution effect, carbon allocation to fruits, carbohydrate transformation, and nutrient uptake and assimilation can affect the fruit quality. © 2018 Society of Chemical Industry.


Asunto(s)
Dióxido de Carbono/farmacología , Cucumis sativus/metabolismo , Frutas/química , Nitrógeno/metabolismo , Dióxido de Carbono/análisis , Cucumis sativus/química , Cucumis sativus/efectos de los fármacos , Cucumis sativus/crecimiento & desarrollo , Frutas/efectos de los fármacos , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Nitratos/análisis , Nitratos/metabolismo , Nitrógeno/análisis , Fósforo/análisis , Fósforo/metabolismo , Proteínas de Plantas/análisis , Proteínas de Plantas/metabolismo , Control de Calidad
11.
Sci Total Environ ; 601-602: 356-364, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28570970

RESUMEN

Humin is the most recalcitrant fraction of soil organic matter (SOM). However, little is known about quantitative structural information on humin and the roles of soil mircoorganisms involved in the humin formation. We applied advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to provide deep insights into humin structural changes in response to long-term balanced fertilization on a Calcaric Fluvisol in the North China plain. The relationships between humin structure and microbiological properties such as microbial biomass, microbial quotient (qmic) and metabolic quotient (qCO2) were also studied. The humins had a considerable (35-44%) proportion of aromatic C being nonprotonated and the vast majority of O-alkyl and anomeric C being protonated. Alkyl (24-27% of all C), aromatic C (17-28%) and O-alkyl (13-20%) predominated in humins. Long-term fertilization promoted the aliphatic nature of humins, causing increases in O-alkyl, anomeric and NCH functional groups and decreases in aromatic C and aromatic CO groups. All these changes were more prominent for treatments of organic fertilizer (OF) and combined mineral NPK fertilizer with OF (NPKOF) relative to the Control and NPK treatments. Fertilization also decreased the alkyl/O-alkyl ratio, aromaticity and hydrophobic characteristics of humins, suggesting a more decomposed and humified state of humin in the Control soil. Moreover, the soil microbiological properties had strong correlations with functional groups of humins. Particularly, microbial biomass C was a relatively sensitive indicator, having positive correlations with oxygen-containing functional groups, i.e., COO/NCO and protonated O-alkyl C, and negative correlations with nonprotonated aromatic C. The qmic and qCO2 were also significantly positively correlated with NCH and aromatic CO, respectively. Our results deepen our understanding of how long-term fertilization impacts the structure of humin, and highlight a linkage between microbiological properties and recalcitrant fraction of SOM besides labile fraction.

12.
Prog Nucl Magn Reson Spectrosc ; 100: 17-51, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28552171

RESUMEN

Solid-state NMR is essential for the characterization of natural organic matter (NOM) and is gaining importance in geosciences and environmental sciences. This review is intended to highlight advanced solid-state NMR techniques, especially a systematic approach to NOM characterization, and their applications to the study of NOM. We discuss some basics of how to acquire high-quality and quantitative solid-state 13C NMR spectra, and address some common technical mistakes that lead to unreliable spectra of NOM. The identification of specific functional groups in NOM, primarily based on 13C spectral-editing techniques, is described and the theoretical background of some recently-developed spectral-editing techniques is provided. Applications of solid-state NMR to investigating nitrogen (N) in NOM are described, focusing on limitations of the widely used 15N CP/MAS experiment and the potential of improved advanced NMR techniques for characterizing N forms in NOM. Then techniques used for identifying proximities, heterogeneities and domains are reviewed, and some examples provided. In addition, NMR techniques for studying segmental dynamics in NOM are reviewed. We also briefly discuss applications of solid-state NMR to NOM from various sources, including soil organic matter, aquatic organic matter, organic matter in atmospheric particulate matter, carbonaceous meteoritic organic matter, and fossil fuels. Finally, examples of NMR-based structural models and an outlook are provided.


Asunto(s)
Productos Biológicos/química , Espectroscopía de Resonancia Magnética/métodos , Compuestos Orgánicos/química , Simulación por Computador , Contaminantes Ambientales/análisis , Humanos , Estructura Molecular , Material Particulado/química , Fenómenos Físicos , Suelo/química , Agua/química
13.
Sci Total Environ ; 576: 444-452, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27792959

RESUMEN

Knowledge of the structural features of humic substances (HSs) is essential for elucidating the mechanisms of humification in different soil environments and realizing their profound roles in environmental issues. The aim of this work was to investigate the chemical structures of fulvic acid (FA), humic acid (HA) and humin (HM) fractions isolated from an upland soil (Fluvisol) and a paddy soil (Anthrosol) typical in China using advanced solid-state 13C nuclear magnetic resonance (NMR) techniques. The results revealed that there were great structural differences of HSs between the two soils. The two FAs showed distinct quantitative differences in aliphatics with more polysaccharides in the FA from the upland soil than from the paddy soil. The HM from the upland soil differed from the paddy soil HM in having more proteins/peptides (23% vs 20%), total aromatics (21% vs 12%) as well as fewer lipids (24% vs 35%) and polysaccharides (27% vs 31%). The HM fractions represented the most different components of organic matter between the two soils. The degree of difference between the two HAs fell in between that of FAs and HM fractions. In particular, the HA from the upland soil had relatively greater degree of aromaticity. Our study indicated that the upland soil exhibited a higher degree of humification compared with the paddy soil. Among the three humic fractions, the FAs featured COO/N-CO groups, and the HAs were more enriched in protonated aromatic C for both soils. In contrast, the two HM fractions contained more O-alkyl C and fewer aromatics than did the other humic fractions, being closer to the original organic materials in soils. We speculate that the evolutionary route of HSs is likely to be the transformation of original organic materials into HM, followed by increased degradation, further oxidization and conversion into HA, and then into FA.

14.
Environ Sci Technol ; 50(3): 1218-26, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26717492

RESUMEN

Dissolved black carbon (BC) released from biochar can be one of the more photoactive components in the dissolved organic matter (DOM) pool. Dissolved BC was mainly composed of aliphatics and aromatics substituted by aromatic C-O and carboxyl/ester/quinone moieties as determined by solid-state nuclear magnetic resonance. It underwent 56% loss of absorbance at 254 nm, almost complete loss of fluorescence, and 30% mineralization during a 169 h simulated sunlight exposure. Photoreactions preferentially targeted aromatic and methyl moieties, generating CH2/CH/C and carboxyl/ester/quinone functional groups. During irradiation, dissolved BC generated reactive oxygen species (ROS) including singlet oxygen and superoxide. The apparent quantum yield of singlet oxygen was 4.07 ± 0.19%, 2-3 fold higher than many well-studied DOM. Carbonyl-containing structures other than aromatic ketones were involved in the singlet oxygen sensitization. The generation of superoxide apparently depended on electron transfer reactions mediated by silica minerals in dissolved BC, in which phenolic structures served as electron donors. Self-generated ROS played an important role in the phototransformation. Photobleaching of dissolved BC decreased its ability to further generate ROS due to lower light absorption. These findings have significant implications on the environmental fate of dissolved BC and that of priority pollutants.


Asunto(s)
Carbón Orgánico/química , Especies Reactivas de Oxígeno/química , Hollín/química , Carbono/química , Espectroscopía de Resonancia Magnética/métodos , Fotoblanqueo , Procesos Fotoquímicos , Sasa , Oxígeno Singlete/química , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...