Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1303412, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444945

RESUMEN

Cancer is a globally complex disease with a plethora of genetic, physiological, metabolic, and environmental variations. With the increasing resistance to current anticancer drugs, efforts have been made to develop effective cancer treatments. Currently, natural products are considered promising cancer therapeutic agents due to their potent anticancer activity and low intrinsic toxicity. Decursin, a coumarin analog mainly derived from the roots of the medicinal plant Angelica sinensis, has a wide range of biological activities, including anti-inflammatory, antioxidant, neuroprotective, and especially anticancer activities. Existing studies indicate that decursin affects cell proliferation, apoptosis, autophagy, angiogenesis, and metastasis. It also indirectly affects the immune microenvironment and can act as a potential anticancer agent. Decursin can exert synergistic antitumor effects when used in combination with a number of common clinical anticancer drugs, enhancing chemotherapy sensitivity and reversing drug resistance in cancer cells, suggesting that decursin is a good drug combination. Second, decursin is also a promising lead compound, and compounds modifying its structure and formulation form also have good anticancer effects. In addition, decursin is not only a key ingredient in several natural herbs and dietary supplements but is also available through a biosynthetic pathway, with anticancer properties and a high degree of safety in cells, animals, and humans. Thus, it is evident that decursin is a promising natural compound, and its great potential for cancer prevention and treatment needs to be studied and explored in greater depth to support its move from the laboratory to the clinic.

2.
Aging (Albany NY) ; 15(12): 5426-5444, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37319316

RESUMEN

Dysfunction of the Hippo pathway is common in esophageal squamous carcinoma (ESCC). Chaetocin, a small molecular compound isolated from the marine fungus, exhibits potent anticancer effects. However, the anticancer effects of chaetocin on ESCC and its potential relationship to Hippo pathway remain unclear. Here, we demonstrated that chaetocin dramatically inhibited the proliferation in ESCC cells by causing cycle arrest in the M phase and activating the caspase-dependent apoptosis signaling pathway in vitro, and we also found that chaetocin induced the accumulation cellular reactive oxygen species (ROS). The RNA-seq analysis indicated that the Hippo pathway is one of the most enriched pathways after chaetocin treatment. We further revealed that chaetocin triggered the activation of Hippo pathway in ESCC cells, which is characterized by elevated phosphorylation levels of almost all core proteins in Hippo pathway, such as MST1 (Thr183), MST2 (Thr180), MOB1 (Thr35), LAST1 (Thr1079 and Ser909) and YAP (Ser127), ultimately leading to decreased nuclear translocation of YAP. Moreover, the MST1/2 inhibitor XMU-MP-1 not only partially rescued the inhibitory effect chaetocin-induced proliferation, but also rescued the chaetocin-induced apoptosis in ESCC cells. Furthermore, in vivo results confirmed the antitumor effect of chaetocin and its relationship with Hippo pathway. Taken together, our study demonstrates that chaetocin exhibits anticancer effects in ESCC via activation of Hippo pathway. These results provide an important basis for further research of chaetocin as a potential candidate for ESCC treatment.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Vía de Señalización Hippo , Neoplasias Esofágicas/patología , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Apoptosis , Proliferación Celular
3.
Front Cell Dev Biol ; 11: 1106638, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025176

RESUMEN

Oncogenes are increasingly recognized as important factors in the development and progression of cancer. Holliday Junction Recognition Protein (HJURP) is a highly specialized mitogenic protein that is a chaperone protein of histone H3. The HJURP gene is located on chromosome 2q37.1 and is involved in nucleosome composition in the mitotic region, forming a three-dimensional crystal structure with Centromere Protein A (CENP-A) and the histone 4 complex. HJURP is involved in the recruitment and assembly of centromere and kinetochore and plays a key role in stabilizing the chromosome structure of tumor cells, and its dysfunction may contribute to tumorigenesis. In the available studies HJURP is upregulated in a variety of cancer tissues and cancer cell lines and is involved in tumor proliferation, invasion, metastasis and immune response. In an in vivo model, overexpression of HJURP in most cancer cell lines promotes cell proliferation and invasiveness, reduces susceptibility to apoptosis, and promotes tumor growth. In addition, upregulation of HJURP was associated with poorer prognosis in a variety of cancers. These properties suggest that HJURP may be a possible target for the treatment of certain cancers. Various studies targeting HJURP as a prognostic and therapeutic target for cancer are gradually attracting interest and attention. This paper reviews the functional and molecular mechanisms of HJURP in a variety of tumor types with the aim of providing new targets for future cancer therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...