Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36987072

RESUMEN

The SHPRH (SNF2, histone linker, PHD, RING, helicase) subfamily belonging to ATP-dependent chromatin remodeling factor is the effective tumor-suppressor, which can polyubiquitinate PCNA (proliferating cell nuclear antigen) and participate in post-replication repair in human. However, little is known about the functions of SHPRH proteins in plants. In this study, we identified a novel SHPRH member BrCHR39 and obtained BrCHR39-silenced transgenic Brassica rapa. In contrast to wild-type plants, transgenic Brassica plants exhibited a released apical dominance phenotype with semi-dwarfism and multiple lateral branches. Furthermore, a global alteration of DNA methylation in the main stem and bud appeared after silencing of BrCHR39. Based on the GO (gene ontology) functional annotation and KEGG (Kyoto encyclopedia of genes and genomes) pathway analysis, the plant hormone signal transduction pathway was clearly enriched. In particular, we found a significant increase in the methylation level of auxin-related genes in the stem, whereas auxin- and cytokinin-related genes were hypomethylated in the bud of transgenic plants. In addition, further qRT-PCR (quantitative real-time PCR) analysis revealed that DNA methylation level always had an opposite trend with gene expression level. Considered together, our findings indicated that suppression of BrCHR39 expression triggered the methylation divergence of hormone-related genes and subsequently affected transcription levels to regulate the apical dominance in Brassica rapa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...