Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Intervalo de año de publicación
1.
Environ Int ; 181: 108310, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37951014

RESUMEN

BACKGROUND: Air conditioning (AC) presents a viable means of tackling the ill-effects of heat on human health. However, AC releases additional anthropogenic heat outdoors, and this could be detrimental to human health, especially in urban communities. This study determined the excess heat-related mortality attributable to anthropogenic heat from AC use under various projected global warming scenarios in seven Japanese cities. The overall protection from AC use was also measured. METHODS: Daily average 2-meter temperatures in the hottest month of August from 2000 to 2010 were modeled using the Weather Research and Forecasting (WRF) model with BEP+BEM (building effect parameterization and building energy model). Risk functions for heat-mortality associations were generated with and without AC use from a two-stage time series analysis. We coupled simulated August temperatures and heat-mortality risk functions to estimate averted deaths and unavoidable deaths from AC use. RESULTS: Anthropogenic heat from AC use slightly augmented the daily urban temperatures by 0.046 °C in Augusts of 2000-2010 and up to 0.181 °C in a future with 3 °C urban warming. This temperature rise was attributable to 3.1-3.5 % of heat-related deaths in Augusts of 2000-2010 under various urban warming scenarios. About 36-47 % of heat-related deaths could be averted by air conditioning use under various urban warming scenarios. DISCUSSION: AC has a valuable protective effect from heat despite some unavoidable mortality from anthropogenic heat release. Overall, the use of AC as a major adaptive strategy requires careful consideration.


Asunto(s)
Aire Acondicionado , Calor Extremo , Mortalidad , Humanos , Ciudades , Japón
4.
Lancet Planet Health ; 6(3): e202-e218, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35278387

RESUMEN

BACKGROUND: Numerous studies have quantified the associations between ambient temperature and enteric infections, particularly all-cause enteric infections. However, the temperature sensitivity of enteric infections might be pathogen dependent. Here, we sought to identify pathogen-specific associations between ambient temperature and enteric infections. METHODS: We did a systematic review and meta-analysis by searching PubMed, Web of Science, and Scopus for peer-reviewed research articles published from Jan 1, 2000, to Dec 31, 2019, and also hand searched reference lists of included articles and excluded reviews. We included studies that quantified the effects of ambient temperature increases on common pathogen-specific enteric infections in humans. We excluded studies that expressed ambient temperature as a categorical or diurnal range, or in a standardised format. Two authors screened the search results, one author extracted data from eligible studies, and four authors verified the data. We obtained the overall risks by pooling the relative risks of enteric infection by pathogen for each 1°C temperature rise using random-effects modelling and robust variance estimation for the correlated effect estimates. Between-study heterogeneity was measured using I2, τ2, and Q-statistic. Publication bias was determined using funnel plot asymmetry and the trim-and-fill method. Differences among pathogen-specific pooled estimates were determined using subgroup analysis of taxa-specific meta-analysis. The study protocol was not registered but followed the PRISMA guidelines. FINDINGS: We identified 2981 articles via database searches and 57 articles from scanning reference lists of excluded reviews and included articles, of which 40 were eligible for pathogen-specific meta-analyses. The overall increased risks of incidence per 1°C temperature rise, expressed as relative risks, were 1·05 (95% CI 1·04-1·07; I2 97%) for salmonellosis, 1·07 (1·04-1·10; I2 99%) for shigellosis, 1·02 (1·01-1·04; I2 98%) for campylobacteriosis, 1·05 (1·04-1·07; I2 36%) for cholera, 1·04 (1·01-1·07; I2 98%) for Escherichia coli enteritis, and 1·15 (1·07-1·24; I2 0%) for typhoid. Reduced risks per 1°C temperature increase were 0·96 (95% CI 0·90-1·02; I2 97%) for rotaviral enteritis and 0·89 (0·81-0·99; I2 96%) for noroviral enteritis. There was evidence of between-pathogen differences in risk for bacterial infections but not for viral infections. INTERPRETATION: Temperature sensitivity of enteric infections can vary according to the enteropathogen causing the infection, particularly for bacteria. Thus, we encourage a pathogen-specific health adaptation approach, such as vaccination, given the possibility of increasingly warm temperatures in the future. FUNDING: Japan Society for the Promotion of Science (Kakenhi) Grant-in-Aid for Scientific Research.


Asunto(s)
Proyectos de Investigación , Humanos , Incidencia , Japón , Temperatura
5.
Environ Health Perspect ; 130(2): 27011, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35188405

RESUMEN

BACKGROUND: Enteric infections cause significant deaths, and global projection studies suggest that mortality from enteric infections will increase in the future with warmer climate. However, a major limitation of these projection studies is the use of risk estimates derived from nonmortality data to project excess enteric infection mortality associated with temperature because of the lack of studies that used actual deaths. OBJECTIVE: We quantified the associations of daily temperature with both mortality and hospital admissions due to enteric infections in the Philippines. These associations were applied to projections under various climate and population change scenarios. METHODS: We modeled nonlinear temperature associations of mortality and hospital admissions due to enteric infections in 17 administrative regions of the Philippines using a two-stage time-series approach. First, we quantified nonlinear temperature associations of enteric infections by fitting generalized linear models with distributed lag nonlinear models. Second, we combined regional estimates using a meta-regression model. We projected the excess future enteric infections due to nonoptimal temperatures using regional temperature-enteric infection associations under various combinations of climate change scenarios according to representative concentration pathways (RCPs) and population change scenarios according to shared socioeconomic pathways (SSPs) for 2010-2099. RESULTS: Regional estimates for mortality and hospital admissions were significantly heterogeneous and had varying shapes in association with temperature. Generally, mortality risks were greater in high temperatures, whereas hospital admission risks were greater in low temperatures. Temperature-attributable excess deaths in 2090-2099 were projected to increase over 2010-2019 by as little as 1.3% [95% empirical confidence intervals (eCI): -3.1%, 6.5%] under a low greenhouse gas emission scenario (RCP 2.6) or as much as 25.5% (95% eCI: -3.5%, 48.2%) under a high greenhouse gas emission scenario (RCP 8.5). A moderate increase was projected for temperature-attributable excess hospital admissions, from 0.02% (95% eCI: -2.0%, 1.9%) under RCP 2.6 to 5.2% (95% eCI: -12.7%, 21.8%) under RCP 8.5 in the same period. High temperature-attributable deaths and hospital admissions due to enteric infections may occur under scenarios with high population growth in 2090-2099. DISCUSSION: In the Philippines, futures with hotter temperatures and high population growth may lead to a greater increase in temperature-related excess deaths than hospital admissions due to enteric infections. Our results highlight the need to strengthen existing primary health care interventions for diarrhea and support health adaptation policies to help reduce future enteric infections. https://doi.org/10.1289/EHP9324.


Asunto(s)
Cambio Climático , Calor , Hospitales , Humanos , Mortalidad , Filipinas/epidemiología , Temperatura
6.
Artículo en Inglés | MEDLINE | ID: mdl-34360484

RESUMEN

Epidemiological studies have quantified the association between ambient temperature and diarrhoea. However, to our knowledge, no study has quantified the temperature association for severe diarrhoea cases. In this study, we quantified the association between mean temperature and two severe diarrhoea outcomes, which were mortality and hospital admissions accompanied with dehydration and/or co-morbidities. Using a 12-year dataset of three urban districts of the National Capital Region, Philippines, we modelled the non-linear association between weekly temperatures and weekly severe diarrhoea cases using a two-stage time series analysis. We computed the relative risks at the 95th (30.4 °C) and 5th percentiles (25.8 °C) of temperatures using minimum risk temperatures (MRTs) as the reference to quantify the association with high- and low-temperatures, respectively. The shapes of the cumulative associations were generally J-shaped with greater associations towards high temperatures. Mortality risks were found to increase by 53.3% [95% confidence interval (CI): 29.4%; 81.7%)] at 95th percentile of weekly mean temperatures compared with the MRT (28.2 °C). Similarly, the risk of hospitalised severe diarrhoea increased by 27.1% (95% CI: 0.7%; 60.4%) at 95th percentile in mean weekly temperatures compared with the MRT (28.6 °C). With the increased risk of severe diarrhoea cases under high ambient temperature, there may be a need to strengthen primary healthcare services and sustain the improvements made in water, sanitation, and hygiene, particularly in poor communities.


Asunto(s)
Frío , Calor , Diarrea/epidemiología , Humanos , Filipinas/epidemiología , Temperatura
7.
Lancet Planet Health ; 5(7): e436-e445, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34245714

RESUMEN

BACKGROUND: Mortality due to enteric infections is projected to increase because of global warming; however, the different temperature sensitivities of major enteric pathogens have not yet been considered in projections on a global scale. We aimed to project global temperature-attributable enteric infection mortality under various future scenarios of sociodemographic development and climate change. METHODS: In this modelling study, we generated global projections in two stages. First, we forecasted baseline mortality from ten enteropathogens (non-typhoidal salmonella, Shigella, Campylobacter, cholera, enteropathogenic Escherichia coli, enterotoxigenic E coli, typhoid, rotavirus, norovirus, and Cryptosporidium) under several future sociodemographic development and health investment scenarios (ie, pessimistic, intermediate, and optimistic). We then estimated the mortality change from baseline attributable to global warming using the product of projected annual temperature anomalies and pathogen-specific temperature sensitivities. FINDINGS: We estimated that in the period 2080-95, the global mean number of temperature-attributable deaths due to enteric infections could be as low as 6599 (95% empirical CI 5441-7757) under the optimistic sociodemographic development and climate change scenario, or as high as 83 888 (67 760-100 015) under the pessimistic scenario. Most of the projected temperature-attributable deaths were from shigellosis, cryptosporidiosis, and typhoid fever in sub-Saharan Africa and South Asia. Considerable reductions in the number of attributable deaths were from viral infections, such as rotaviral and noroviral enteritis, which resulted in net reductions in attributable enteric infection mortality under optimistic scenarios for Latin America and the Caribbean and East Asia and the Pacific. INTERPRETATION: Temperature-attributable mortality could increase under warmer climate and unfavourable sociodemographic conditions. Mitigation policies for limiting global warming and sociodemographic development policies for low-income and middle-income countries might help reduce mortality from enteric infections in the future. FUNDING: Japan Society for the Promotion of Science, Japan Science and Technology Agency, and Spanish Ministry of Economy, Industry, and Competitiveness.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Biodiversidad , Escherichia coli , Humanos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...