Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210090, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36373930

RESUMEN

Current policy is driving renewed impetus to restore forests to return ecological function, protect species, sequester carbon and secure livelihoods. Here we assess the contribution of tree planting to ecosystem restoration in tropical and sub-tropical Asia; we synthesize evidence on mortality and growth of planted trees at 176 sites and assess structural and biodiversity recovery of co-located actively restored and naturally regenerating forest plots. Mean mortality of planted trees was 18% 1 year after planting, increasing to 44% after 5 years. Mortality varied strongly by site and was typically ca 20% higher in open areas than degraded forest, with height at planting positively affecting survival. Size-standardized growth rates were negatively related to species-level wood density in degraded forest and plantations enrichment settings. Based on community-level data from 11 landscapes, active restoration resulted in faster accumulation of tree basal area and structural properties were closer to old-growth reference sites, relative to natural regeneration, but tree species richness did not differ. High variability in outcomes across sites indicates that planting for restoration is potentially rewarding but risky and context-dependent. Restoration projects must prepare for and manage commonly occurring challenges and align with efforts to protect and reconnect remaining forest areas. The abstract of this article is available in Bahasa Indonesia in the electronic supplementary material. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Asunto(s)
Ecosistema , Clima Tropical , Biodiversidad , Plantas , Asia
2.
Sci Total Environ ; 642: 1252-1262, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30045506

RESUMEN

Simultaneous measurement of plant functional traits and the regeneration environment should shed light on the plant-environment interactions and feedbacks as secondary forest regenerates. However, little of such work has been done in the wet tropics, and even fewer studies have examined soil nutrients. We investigated whether plant functional traits and environmental variables explain the varied recovery of secondary forests in Singapore. Our study plots included three primary forest plots and eight approximately 60-year-old secondary forest plots regenerating from intensive agricultural activities. Using 35 seedling quadrats, we asked: Q1) How do environmental variables explain the variation in seedling functional traits observed in primary and secondary forests? Q2) How do seedling traits, adult traits and environmental variables relate and explain variation in species richness and stem density in secondary forests? We found that both light and soil fertility explained the shifts in plants functional traits from poorly recovering secondary forests to primary forests. Poor forest regrowth was correlated with high soil aluminum levels and lower leaf nitrogen concentrations. Low nutrients and high aluminum saturation were also negatively correlated with seedling species richness, but not stem density, in the secondary forests. Forest recovery is probably slowed by positive feedback between slower nutrient returns from slow decaying litter and further recruitment of nutrient conserving species, as indicated by positive correlations among adult leaf CN ratio, litter depth, soil CN ratio and quadrat level CN ratio. Plant functional traits are indicative of the strategies of successful seedlings and do not necessarily relate to overall forest recovery. Hence, while some specialist plant species are able to accrue high nutrients on degraded soils with aluminum toxicity and low nutrients, species richness on these soils was poor. This underscores the need to concurrently measure environmental variables and plant traits when investigating the mechanisms driving changes during forest recovery.


Asunto(s)
Bosques , Monitoreo del Ambiente , Agricultura Forestal , Hojas de la Planta , Singapur , Suelo , Árboles , Clima Tropical
3.
Primates ; 59(2): 163-171, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28948386

RESUMEN

Pristine habitats have generally been considered to be the most important ecological resource for wildlife conservation, but due to forest degradation caused by human activities, mosaics of secondary forests have become increasingly prominent. We studied three forest types in a mosaic tropical forest consisting of short secondary forest (SS), tall secondary forest (TS) and freshwater swamp forest (SF). These forests differed in stand structure and floristic composition, as well as phenological productivity of fruits, flowers and young leaves. We examined habitat use of long-tailed macaques (Macaca fascicularis) in relation to indices of phenological activity. The macaques used the SS for feeding/foraging more than the TS and the SF. This was because the SS had higher productivity of fruit, which is a preferred food resource for macaques. Stem densities of young leaves in the SS and the TS also influenced habitat use, as they provided more clumped resources. Use of SF was limited, but these forests provided more species-rich resources. Our results showed that M. fascicularis responded to small-scale variability in phenological activity between forest types found in a heterogeneous mosaic forest, with young secondary regrowth forests likely providing the most important food resources. Mosaic landscapes may be important as they can buffer the effects of temporal food resource variability in any given forest type. In our increasingly human-altered landscapes, a better understanding of the role of secondary forest mosaics is crucial to the conservation and management of wildlife habitats and the animals they support.


Asunto(s)
Ecosistema , Macaca fascicularis/fisiología , Bosque Lluvioso , Clima Tropical , Animales , Conservación de los Recursos Naturales , Flores , Frutas , Hojas de la Planta , Tallos de la Planta/anatomía & histología , Estaciones del Año , Singapur , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...