Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 11(13): 12723-12732, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30854843

RESUMEN

A new strategy for influencing the solid-state morphology of conjugated polymers was developed through physical blending with a low-molecular-weight branched polyethylene. This nontoxic and low-boiling-point additive was blended with a high-charge-mobility diketopyrrolopyrrole-based conjugated polymer, and a detailed investigation of the new blended materials was performed by various characterization tools, including X-ray diffraction, UV-vis spectroscopy, and atomic force microscopy. Interestingly, the branched additive was shown to reduce the crystallinity of the conjugated polymer while promoting aggregation and phase separation in the solid state. Upon thermal removal of the olefinic additive, the thin films maintained a lower crystallinity and aggregated morphology in comparison to a nonblended polymer. The semiconducting performance of the new branched polyethylene/conjugated polymer blends was also investigated in organic field-effect transistors, which showed a stable charge mobility of around 0.3 cm2 V-1 s-1 without thermal annealing, independent of the blending ratio. Furthermore, using the new polyethylene-based additive, the concentration of a conjugated polymer required for the fabrication of organic field-effect transistor devices was reduced down to 0.05 wt %, without affecting charge transport, which represents a significant improvement compared to usual concentrations used for solution deposition. Our results demonstrate that the physical blending of a conjugated polymer with nontoxic, low-molecular-weight branched polyethylene is a promising strategy for the modification and fine-tuning of the solid-state morphology of conjugated polymers without sacrificing their charge-transport properties, thus creating new opportunities for the large-scale processing of organic semiconductors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...