Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Mater ; 23(4): 486-491, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38278983

RESUMEN

A hallmark of many unconventional superconductors is the presence of many-body interactions that give rise to broken-symmetry states intertwined with superconductivity. Recent resonant soft X-ray scattering experiments report commensurate 3a0 charge density wave order in infinite-layer nickelates, which has important implications regarding the universal interplay between charge order and superconductivity in both cuprates and nickelates. Here we present X-ray scattering and spectroscopy measurements on a series of NdNiO2+x samples, which reveal that the signatures of charge density wave order are absent in fully reduced, single-phase NdNiO2. The 3a0 superlattice peak instead originates from a partially reduced impurity phase where excess apical oxygens form ordered rows with three-unit-cell periodicity. The absence of any observable charge density wave order in NdNiO2 highlights a crucial difference between the phase diagrams of cuprate and nickelate superconductors.

3.
Nat Commun ; 12(1): 597, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33500415

RESUMEN

In strongly correlated systems the strength of Coulomb interactions between electrons, relative to their kinetic energy, plays a central role in determining their emergent quantum mechanical phases. We perform resonant x-ray scattering on Bi2Sr2CaCu2O8+δ, a prototypical cuprate superconductor, to probe electronic correlations within the CuO2 plane. We discover a dynamic quasi-circular pattern in the x-y scattering plane with a radius that matches the wave vector magnitude of the well-known static charge order. Along with doping- and temperature-dependent measurements, our experiments reveal a picture of charge order competing with superconductivity where short-range domains along x and y can dynamically rotate into any other in-plane direction. This quasi-circular spectrum, a hallmark of Brazovskii-type fluctuations, has immediate consequences to our understanding of rotational and translational symmetry breaking in the cuprates. We discuss how the combination of short- and long-range Coulomb interactions results in an effective non-monotonic potential that may determine the quasi-circular pattern.

4.
J Phys Chem Lett ; 12(1): 724-731, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33400873

RESUMEN

The van der Waals (vdW) chromium trihalides (CrX3) exhibit field-tunable, two-dimensional magnetic orders that vary with the halogen species and the number of layers. Their magnetic ground states with proximity in energies are sensitive to the degree of ligand-metal (p-d) hybridization and relevant modulations in the Cr d-orbital interactions. We use soft X-ray absorption (XAS) and resonant inelastic X-ray scattering (RIXS) spectroscopy at Cr L-edge along with the atomic multiplet simulations to determine the key energy scales such as the crystal field 10 Dq and interorbital Coulomb interactions under different ligand metal charge transfer (LMCT) in CrX3 (X= Cl, Br, and I). Through this systematic study, we show that our approach compared to the literature has yielded a set of more reliably determined parameters for establishing a base Hamiltonian for CrX3.

5.
Sci Rep ; 10(1): 22226, 2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33335197

RESUMEN

Time-resolved resonant inelastic X-ray scattering (RIXS) is one of the developing techniques enabled by the advent of X-ray free electron laser (FEL). It is important to evaluate how the FEL jitter, which is inherent in the self-amplified spontaneous emission process, influences the RIXS measurement. Here, we use a microchannel plate (MCP) based Timepix soft X-ray detector to conduct a time-resolved RIXS measurement at the Ti L3-edge on a charge-density-wave material TiSe2. The fast parallel Timepix readout and single photon sensitivity enable pulse-by-pulse data acquisition and analysis. Due to the FEL jitter, low detection efficiency of spectrometer, and low quantum yield of RIXS process, we find that less than 2% of the X-ray FEL pulses produce signals, preventing acquiring sufficient data statistics while maintaining temporal and energy resolution in this measurement. These limitations can be mitigated by using future X-ray FELs with high repetition rates, approaching MHz such as the European XFEL in Germany and LCLS-II in the USA, as well as by utilizing advanced detectors, such as the prototype used in this study.

6.
Nat Mater ; 19(9): 1036, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32661388

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Nat Mater ; 19(4): 381-385, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31959951

RESUMEN

The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors1-10. The recent discovery of superconductivity in the doped infinite-layer nickelate NdNiO2 (refs. 11,12) has strengthened these efforts. Here, we use X-ray spectroscopy and density functional theory to show that the electronic structure of LaNiO2 and NdNiO2, while similar to the cuprates, includes significant distinctions. Unlike cuprates, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly interacting three-dimensional 5d metallic state, which hybridizes with a quasi-two-dimensional, strongly correlated state with [Formula: see text] symmetry in the NiO2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare-earth intermetallics13-15, which are well known for heavy fermion behaviour, where the NiO2 correlated layers play an analogous role to the 4f states in rare-earth heavy fermion compounds. This Kondo- or Anderson-lattice-like 'oxide-intermetallic' replaces the Mott insulator as the reference state from which superconductivity emerges upon doping.

8.
Proc Natl Acad Sci U S A ; 116(45): 22458-22463, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31641068

RESUMEN

This study investigates the evolution of superconductivity in K2-xFe4+ySe5 using temperature-dependent X-ray absorption and resonant inelastic X-ray scattering techniques. Magnetization measurements show that polycrystalline superconducting (SC) K1.9Fe4.2Se5 has a critical temperature (T c) of ∼31 K with a varying superconducting volume fraction, which strongly depends on its synthesis temperature. An increase in Fe-structural/vacancy disorder in SC samples with more Fe atoms occupying vacant 4d sites is found to be closely related to the decrease in the spin magnetic moment of Fe. Moreover, the nearest-neighbor Fe-Se bond length in SC samples exceeds that in the non-SC (NS) sample, K2Fe4Se5, which indicates a weaker hybridization between the Fe 3d and Se 4p states in SC samples. These results clearly demonstrate the correlations among the local electronic and atomic structures and the magnetic properties of K2-xFe4+ySe5 superconductors, providing deeper insight into the electron pairing mechanisms of superconductivity.

9.
J Phys Condens Matter ; 31(19): 195601, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30848247

RESUMEN

X-ray absorption spectroscopy (XAS) is performed to study changes in the electronic structures of colossal magnetoresistance (CMR) and charged ordered (CO) La1-x Ca x MnO3 manganites with respect to temperature. The pre-edge features in O and Mn K-edge XAS spectra, which are highly sensitive to the local distortion of MnO6 octahedral, exhibit contrasting temperature dependence between CMR and CO samples. The seemingly counter-intuitive XAS temperature dependence can be reconciled in the context of polarons. These results help identify the most relevant orbital states associated with polarons and highlight the crucial role played by polarons in understanding the electronic structures of manganites.

10.
Phys Rev Lett ; 119(10): 107204, 2017 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-28949160

RESUMEN

Ultrafast x-ray scattering studies of the topological Skyrmion phase in Cu_{2}OSeO_{3} show the dynamics to be strongly dependent on the excitation energy and fluence. At high photon energies, where the electron-spin scattering cross section is relatively high, the excitation of the topological Skyrmion phase shows a nonlinear dependence on the excitation fluence, in contrast to the excitation of the conical phase which is linearly dependent on the excitation fluence. The excitation of the Skyrmion order parameter is nonlinear in the magnetic excitation resulting from scattering during electron-hole recombination, indicating different dominant scattering processes in the conical and Skyrmion phases.

11.
Science ; 357(6346): 71-75, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28684521

RESUMEN

The interactions that lead to the emergence of superconductivity in iron-based materials remain a subject of debate. It has been suggested that electron-electron correlations enhance electron-phonon coupling in iron selenide (FeSe) and related pnictides, but direct experimental verification has been lacking. Here we show that the electron-phonon coupling strength in FeSe can be quantified by combining two time-domain experiments into a "coherent lock-in" measurement in the terahertz regime. X-ray diffraction tracks the light-induced femtosecond coherent lattice motion at a single phonon frequency, and photoemission monitors the subsequent coherent changes in the electronic band structure. Comparison with theory reveals a strong enhancement of the coupling strength in FeSe owing to correlation effects. Given that the electron-phonon coupling affects superconductivity exponentially, this enhancement highlights the importance of the cooperative interplay between electron-electron and electron-phonon interactions.

12.
Sci Rep ; 6: 38796, 2016 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-27941842

RESUMEN

In the past few years, we have been witnessing an increased interest for studying materials properties under non-equilibrium conditions. Several well established spectroscopies for experiments in the energy domain have been successfully adapted to the time domain with sub-picosecond time resolution. Here we show the realization of high resolution resonant inelastic X-ray scattering (RIXS) with a stable ultrashort X-ray source such as an externally seeded free electron laser (FEL). We have designed and constructed a RIXS experimental endstation that allowed us to successfully measure the d-d excitations in KCoF3 single crystals at the cobalt M2,3-edge at FERMI FEL (Elettra-Sincrotrone Trieste, Italy). The FEL-RIXS spectra show an excellent agreement with the ones obtained from the same samples at the MERIXS endstation of the MERLIN beamline at the Advanced Light Source storage ring (Berkeley, USA). We established experimental protocols for performing time resolved RIXS experiments at a FEL source to avoid X ray-induced sample damage, while retaining comparable acquisition time to the synchrotron based measurements. Finally, we measured and modelled the influence of the FEL mixed electromagnetic modes, also present in externally seeded FELs, and the beam transport with ~120 meV experimental resolution achieved in the presented RIXS setup.

13.
Nat Commun ; 7: 10852, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26927313

RESUMEN

Recent developments in high-temperature superconductivity highlight a generic tendency of the cuprates to develop competing electronic (charge) supermodulations. While coupled with the lattice and showing different characteristics in different materials, these supermodulations themselves are generally conceived to be quasi-two-dimensional, residing mainly in individual CuO2 planes, and poorly correlated along the c axis. Here we observed with resonant elastic X-ray scattering a distinct type of electronic supermodulation in YBa2Cu3O(7-x) (YBCO) thin films grown epitaxially on La0.7Ca0.3MnO3 (LCMO). This supermodulation has a periodicity nearly commensurate with four lattice constants in-plane, eight out of plane, with long correlation lengths in three dimensions. It sets in far above the superconducting transition temperature and competes with superconductivity below this temperature for electronic states predominantly in the CuO2 plane. Our finding sheds light on the nature of charge ordering in cuprates as well as a reported long-range proximity effect between superconductivity and ferromagnetism in YBCO/LCMO heterostructures.


Asunto(s)
Técnicas Electroquímicas , Elementos de la Serie de los Lantanoides/química , Cobre/química , Conductividad Eléctrica , Fenómenos Magnéticos , Difracción de Rayos X , Itrio/química
14.
Sci Rep ; 5: 16690, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26573394

RESUMEN

Studies to date on ferromagnet/d-wave superconductor heterostructures focus mainly on the effects at or near the interfaces while the response of bulk properties to heterostructuring is overlooked. Here we use resonant soft x-ray scattering spectroscopy to reveal a novel c-axis ferromagnetic coupling between the in-plane Cu spins in YBa2Cu3O7-x (YBCO) superconductor when it is grown on top of ferromagnetic La0.7Ca0.3MnO3 (LCMO) manganite layer. This coupling, present in both normal and superconducting states of YBCO, is sensitive to the interfacial termination such that it is only observed in bilayers with MnO2 but not with La0.7Ca0.3O interfacial termination. Such contrasting behaviors, we propose, are due to distinct energetic of CuO chain and CuO2 plane at the La0.7Ca0.3O and MnO2 terminated interfaces respectively, therefore influencing the transfer of spin-polarized electrons from manganite to cuprate differently. Our findings suggest that the superconducting/ferromagnetic bilayers with proper interfacial engineering can be good candidates for searching the theorized Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state in cuprates and studying the competing quantum orders in highly correlated electron systems.

15.
Nat Mater ; 14(9): 883-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26147844

RESUMEN

Static strain in complex oxide heterostructures has been extensively used to engineer electronic and magnetic properties at equilibrium. In the same spirit, deformations of the crystal lattice with light may be used to achieve functional control across heterointerfaces dynamically. Here, by exciting large-amplitude infrared-active vibrations in a LaAlO3 substrate we induce magnetic order melting in a NdNiO3 film across a heterointerface. Femtosecond resonant soft X-ray diffraction is used to determine the spatiotemporal evolution of the magnetic disordering. We observe a magnetic melt front that propagates from the substrate interface into the film, at a speed that suggests electronically driven motion. Light control and ultrafast phase front propagation at heterointerfaces may lead to new opportunities in optomagnetism, for example by driving domain wall motion to transport information across suitably designed devices.

16.
Nat Commun ; 6: 7377, 2015 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-26051704

RESUMEN

Ultrafast light pulses can modify electronic properties of quantum materials by perturbing the underlying, intertwined degrees of freedom. In particular, iron-based superconductors exhibit a strong coupling among electronic nematic fluctuations, spins and the lattice, serving as a playground for ultrafast manipulation. Here we use time-resolved X-ray scattering to measure the lattice dynamics of photoexcited BaFe2As2. On optical excitation, no signature of an ultrafast change of the crystal symmetry is observed, but the lattice oscillates rapidly in time due to the coherent excitation of an A1g mode that modulates the Fe-As-Fe bond angle. We directly quantify the coherent lattice dynamics and show that even a small photoinduced lattice distortion can induce notable changes in the electronic and magnetic properties. Our analysis implies that transient structural modification can be an effective tool for manipulating the electronic properties of multi-orbital systems, where electronic instabilities are sensitive to the orbital character of bands.

17.
Phys Rev Lett ; 112(16): 167202, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24815665

RESUMEN

We report the observation of a Skyrmion lattice in the chiral multiferroic insulator Cu2OSeO3 using Cu L3-edge resonant soft x-ray diffraction. We observe the unexpected existence of two distinct Skyrmion sublattices that arise from inequivalent Cu sites with chemically identical coordination numbers but different magnetically active orbitals. The Skyrmion sublattices are rotated with respect to each other, implying a long wavelength modulation of the lattice. The modulation vector is controlled with an applied magnetic field, associating this moirélike phase with a continuous phase transition. Our findings will open up a new class of science involving manipulation of quantum topological states.

18.
Phys Rev Lett ; 112(15): 157002, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24785066

RESUMEN

We report femtosecond resonant soft x-ray diffraction measurements of the dynamics of the charge order and of the crystal lattice in nonsuperconducting, stripe-ordered La1.875Ba0.125CuO4. Excitation of the in-plane Cu-O stretching phonon with a midinfrared pulse has been previously shown to induce a transient superconducting state in the closely related compound La1.675Eu0.2Sr0.125CuO4. In La1.875Ba0.125CuO4, we find that the charge stripe order melts promptly on a subpicosecond time scale. Surprisingly, the low temperature tetragonal (LTT) distortion is only weakly reduced, reacting on significantly longer time scales that do not correlate with light-induced superconductivity. This experiment suggests that charge modulations alone, and not the LTT distortion, prevent superconductivity in equilibrium.

19.
Science ; 343(6177): 1333-6, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24603154

RESUMEN

Multiferroics have attracted strong interest for potential applications where electric fields control magnetic order. The ultimate speed of control via magnetoelectric coupling, however, remains largely unexplored. Here, we report an experiment in which we drove spin dynamics in multiferroic TbMnO3 with an intense few-cycle terahertz (THz) light pulse tuned to resonance with an electromagnon, an electric-dipole active spin excitation. We observed the resulting spin motion using time-resolved resonant soft x-ray diffraction. Our results show that it is possible to directly manipulate atomic-scale magnetic structures with the electric field of light on a sub-picosecond time scale.

20.
Sci Rep ; 4: 4050, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24522173

RESUMEN

Electronic orderings of charges, orbitals and spins are observed in many strongly correlated electron materials, and revealing their dynamics is a critical step toward undertsanding the underlying physics of important emergent phenomena. Here we use time-resolved resonant soft x-ray scattering spectroscopy to probe the dynamics of antiferromagnetic spin ordering in the manganite Pr0.7Ca0.3MnO3 following ultrafast photo-exitation. Our studies reveal a glass-like recovery of the spin ordering and a crossover in the dimensionality of the restoring interaction from quasi-1D at low pump fluence to 3D at high pump fluence. This behavior arises from the metastable state created by photo-excitation, a state characterized by spin disordered metallic droplets within the larger charge- and spin-ordered insulating domains. Comparison with time-resolved resistivity measurements suggests that the collapse of spin ordering is correlated with the insulator-to-metal transition, but the recovery of the insulating phase does not depend on the re-establishment of the spin ordering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...