Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Genet ; 13: 942574, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212147

RESUMEN

Despite the obesity crisis in the United States, the underlying genetics are poorly understood. Our lab previously identified Keratinocyte-associated protein 3, Krtcap3, as a candidate gene for adiposity through a genome-wide association study in outbred rats, where increased liver expression of Krtcap3 correlated with decreased fat mass. Here we seek to confirm that Krtcap3 expression affects adiposity traits. To do so, we developed an in vivo whole-body Krtcap3 knock-out (KO) rat model. Wild-type (WT) and KO rats were placed onto a high-fat (HFD) or low-fat diet (LFD) at 6 weeks of age and were maintained on diet for 13 weeks, followed by assessments of metabolic health. We hypothesized that Krtcap3-KO rats will have increased adiposity and a worsened metabolic phenotype relative to WT. We found that KO male and female rats have significantly increased body weight versus WT, with the largest effect in females on a HFD. KO females also ate more and had greater adiposity, but were more insulin sensitive than WT regardless of diet condition. Although KO males weighed more than WT under both diet conditions, there were no differences in eating behavior or fat mass. Interestingly, KO males on a HFD were more insulin resistant than WT. This study confirms that Krtcap3 plays a role in body weight regulation and demonstrates genotype- and sex-specific effects on food intake, adiposity, and insulin sensitivity. Future studies will seek to better understand these sex differences, the role of diet, and establish a mechanism for Krtcap3 in obesity.

2.
PLoS One ; 17(1): e0262173, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35051193

RESUMEN

The Modern Western Diet has been associated with the rise in metabolic and inflammatory diseases, including obesity, diabetes, and cardiovascular disease. This has been attributed, in part, to the increase in dietary omega-6 polyunsaturated fatty acid (PUFA) consumption, specifically linoleic acid (LA), arachidonic acid (ARA), and their subsequent metabolism to pro-inflammatory metabolites which may be driving human disease. Conversion of dietary LA to ARA is regulated by genetic variants near and within the fatty acid desaturase (FADS) haplotype block, most notably single nucleotide polymorphism rs174537 is strongly associated with FADS1 activity and expression. This variant and others within high linkage disequilibrium may potentially explain the diversity in both diet and inflammatory mediators that drive chronic inflammatory disease in human populations. Mechanistic exploration into this phenomenon using human hepatocytes is limited by current two-dimensional culture models that poorly replicate in vivo functionality. Therefore, we aimed to develop and characterize a three-dimensional hepatic construct for the study of human PUFA metabolism. Primary human hepatocytes cultured in 3D hydrogels were characterized for their capacity to represent basic lipid processing functions, including lipid esterification, de novo lipogenesis, and cholesterol efflux. They were then exposed to control and LA-enriched media and reproducibly displayed allele-specific metabolic activity of FADS1, based on genotype at rs174537. Hepatocytes derived from individuals homozygous with the minor allele at rs174537 (i.e., TT) displayed the slowest metabolic conversion of LA to ARA and significantly reduced FADS1 and FADS2 expression. These results support the feasibility of using 3D human hepatic cultures for the study of human PUFA and lipid metabolism and relevant gene-diet interactions, thereby enabling future nutrition targets in humans.


Asunto(s)
Ácido Graso Desaturasas/genética , Ácidos Grasos Omega-6/metabolismo , Ácido Linoleico/metabolismo , Adulto , Alelos , Técnicas de Cultivo de Célula/métodos , Colesterol/metabolismo , Femenino , Genotipo , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Hidrogeles/química , Desequilibrio de Ligamiento , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Adulto Joven
3.
J Gerontol A Biol Sci Med Sci ; 76(5): 770-777, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32997738

RESUMEN

Increased age is a risk factor for poor outcomes from respiratory failure and acute respiratory distress syndrome (ARDS). In this study, we sought to define age-related differences in lung inflammation, muscle injury, and metabolism after intratracheal lipopolysaccharide (IT-LPS) acute lung injury (ALI) in adult (6 months) and aged (18-20 months) male C57BL/6 mice. We also investigated age-related changes in muscle fatty acid oxidation (FAO) and the consequences of systemic FAO inhibition with the drug etomoxir. Aged mice had a distinct lung injury course characterized by prolonged alveolar neutrophilia and lack of response to therapeutic exercise. To assess the metabolic consequences of ALI, aged and adult mice underwent whole body metabolic phenotyping before and after IT-LPS. Aged mice had prolonged anorexia and decreased respiratory exchange ratio, indicating increased reliance on FAO. Etomoxir increased mortality in aged but not adult ALI mice, confirming the importance of FAO on survival from acute severe stress and suggesting that adult mice have increased resilience to FAO inhibition. Skeletal muscles from aged ALI mice had increased transcription of key fatty acid metabolizing enzymes, CPT-1b, LCAD, MCAD, FATP1 and UCP3. Additionally, aged mice had increased protein levels of CPT-1b at baseline and after lung injury. Surprisingly, CPT-1b in isolated skeletal muscle mitochondria had decreased activity in aged mice compared to adults. The distinct phenotype of aged ALI mice has similar characteristics to the adverse age-related outcomes of ARDS. This model may be useful to examine and augment immunologic and metabolic abnormalities unique to the critically ill aged population.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Envejecimiento/metabolismo , Ácidos Grasos/metabolismo , Lesión Pulmonar Aguda/fisiopatología , Animales , Anorexia/metabolismo , Cadherinas/metabolismo , Carnitina O-Palmitoiltransferasa/metabolismo , Modelos Animales de Enfermedad , Metabolismo Energético/fisiología , Inhibidores Enzimáticos/farmacología , Compuestos Epoxi/farmacología , Proteínas de Transporte de Ácidos Grasos/metabolismo , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Neutrófilos/metabolismo , Oxidación-Reducción , Fenotipo , Intercambio Gaseoso Pulmonar/fisiología , Proteína Desacopladora 3/metabolismo
4.
Diabetes ; 68(7): 1508-1522, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31010960

RESUMEN

Insulin resistance (IR) is a harbinger of type 2 diabetes (T2D) and partly determined by genetic factors. However, genetically regulated mechanisms of IR remain poorly understood. Using gene expression, genotype, and insulin sensitivity data from the African American Genetics of Metabolism and Expression (AAGMEx) cohort, we performed transcript-wide correlation and expression quantitative trait loci (eQTL) analyses to identify IR-correlated cis-regulated transcripts (cis-eGenes) in adipose tissue. These IR-correlated cis-eGenes were tested in the European ancestry individuals in the Metabolic Syndrome in Men (METSIM) cohort for trans-ethnic replication. Comparison of Matsuda index-correlated transcripts in AAGMEx with the METSIM study identified significant correlation of 3,849 transcripts, with concordant direction of effect for 97.5% of the transcripts. cis-eQTL for 587 Matsuda index-correlated genes were identified in both cohorts. Enoyl-CoA hydratase domain-containing 3 (ECHDC3) was the top-ranked Matsuda index-correlated cis-eGene. Expression levels of ECHDC3 were positively correlated with Matsuda index, and regulated by cis-eQTL, rs34844369 being the top cis-eSNP in AAGMEx. Silencing of ECHDC3 in adipocytes significantly reduced insulin-stimulated glucose uptake and Akt Ser473 phosphorylation. RNA sequencing analysis identified 691 differentially expressed genes in ECHDC3-knockdown adipocytes, which were enriched in γ-linolenate biosynthesis, and known IR genes. Thus, our studies elucidated genetic regulatory mechanisms of IR and identified genes and pathways in adipose tissue that are mechanistically involved in IR.


Asunto(s)
Tejido Adiposo/metabolismo , Enoil-CoA Hidratasa/genética , Resistencia a la Insulina/genética , Adipocitos/metabolismo , Negro o Afroamericano/genética , Western Blotting , Biología Computacional , Genotipo , Técnicas de Genotipaje , Humanos , Sitios de Carácter Cuantitativo/genética , Población Blanca/genética
5.
Food Chem Toxicol ; 113: 287-295, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29421645

RESUMEN

Although epidemiological data and results from rodent studies support an inverse relationship between nicotine consumption and body weight, the molecular mechanisms are poorly understood. CD-1 mice were fed a basal diet or a basal diet containing low or high dose smokeless tobacco blend or high dose nicotine tartrate for 14 weeks. High dose tobacco blend and nicotine tartrate diets vs. basal diet reduced mouse body weight (16.3% and 19.7%, respectively), epididymal (67.6% and 72.5%, respectively) and brown adipose weight (42% and 38%, respectively), epididymal adipocyte size (46.4% and 41.4%, respectively), and brown adipose tissue lipid droplet abundance, with no elevation of adipose tissue inflammation. High dose tobacco blend and nicotine diets also increased mouse physical activity and decreased respiratory exchange ratio, suggesting that high dose nicotine intake induces adipose tissue triglyceride lipolysis to provide fatty acids as an energy source. Both low and high dose tobacco blend and nicotine diet feeding vs. basal diet increased plasma insulin levels (2.9, 3.6 and 4.3-fold, respectively) and improved blood glucose disposal without affecting insulin sensitivity. Feeding of the high dose tobacco blend or nicotine feeding in mice induces body weight loss likely by increasing physical activity and stimulating adipose tissue triglyceride lipolysis.


Asunto(s)
Adipocitos/efectos de los fármacos , Nicotiana , Nicotina/farmacología , Condicionamiento Físico Animal , Pérdida de Peso/efectos de los fármacos , Adipocitos/citología , Tejido Adiposo/metabolismo , Animales , Glucemia/metabolismo , Tamaño de la Célula , Conducta Alimentaria , Insulina/sangre , Resistencia a la Insulina , Lipólisis , Masculino , Ratones , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...