Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 14685, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38918476

RESUMEN

Human milk oligosaccharides (HMOs) promote adequate intestinal microbiota development and favor the immune system's maturation and cognitive development. In addition to non-modifiable factors, HMOs composition can be influenced by other factors like body mass index and eating habits, but the reports are discrepant. The aim of this work was to describe the correlation between maternal factors and HMOs concentration in colostrum in 70 women from northeastern Mexico categorized into women with normal weight and women with overweight or obesity. The absolute concentration of six HMOs were significantly lower in women with overweight or obesity compared to women with normal weight (LNFPI p = 0.0021, 2'-FL p = 0.0304, LNT p = 0.0492, LNnT p = 0.00026, 3'-SL p = 0.0476, 6'-SL p = 0.00041). Another main finding was that the frequency of consumption of food groups such as vegetables, fruits and meats was positively correlated to specific HMOs (Poblano chili and 2'-FL; rs = 0.702, p = 0.0012; Orange or tangerine and 3-FL; rs = 0.428, p = 0.0022; Chicken and 2'-FL; rs = 0.615, p = 0.0039). This study contributes to the elucidation of how maternal factors influence the composition of HMOs and opens possibilities for future research aimed at mitigating overweight or obesity, consequently improving the quality of human milk.


Asunto(s)
Lactancia Materna , Conducta Alimentaria , Leche Humana , Oligosacáridos , Humanos , Leche Humana/química , Leche Humana/metabolismo , Femenino , México , Oligosacáridos/análisis , Adulto , Obesidad/metabolismo , Índice de Masa Corporal , Calostro/química , Calostro/metabolismo , Sobrepeso , Adulto Joven
2.
Animals (Basel) ; 14(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38891678

RESUMEN

Insects have been consumed for time immemorial in many regions of the globe. However, in other parts, they are not traditionally eaten. Because they are a more sustainable source of animal protein and provide valuable nutrients as well as bioactive compounds with beneficial effects on the human body, their consumption is encouraged. Knowledge can serve as a tool for better acceptance of insects as food. In this context, the present work investigated the knowledge about the nutritional value and health effects of edible insects in different countries. Data were collected by employing a questionnaire survey translated into the different languages of all participating countries and were treated using statistical tools. A total of 7222 responses were obtained. The results indicated that for many issues, the participants manifested a neutral opinion (neither agree nor disagree), but the participants who manifested agreement/disagreement were generally well informed. They were also able to identify untrue facts and answer accordingly by disagreeing. Factor analysis showed four groups of questions: nutritive value, negative perception and risks, safety and benefits of insects and contamination and harmful components. Finally, significant differences were observed according to the sociodemographic variables studies (sex, age, education, living environment and country), with age and country being the most influential of the sociodemographic factors on knowledge. Therefore, increasing knowledge is envisaged as an essential factor in augmenting the recognition of edible insects as a nutritional food, presenting health benefits apart from being a more sustainable source of animal protein when compared with beef or pork meats.

3.
Food Chem ; 453: 139693, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38781906

RESUMEN

Canola protein obtained from canola meal, a byproduct of the canola industry, is an economical biopolymer with promising film-forming properties. It has significant potential for use as a food packaging material, though it possesses some functional limitations that need improvement. Incorporating nanomaterials is an option to enhance functional properties. This study aims to produce canola protein films by integrating GO exfoliated at several oxidation times and weight ratios to optimize mechanical, thermal, and barrier properties. Oxidation alters the C/O ratio and adds functional groups that bond with the amino/carboxyl groups of protein, enhancing the film properties. Significant improvement was obtained in GO at 60 and 120 min oxidation time and 3% addition level. Tensile strength and elastic modulus increased 200% and 481.72%, respectively, compared to control. Control films showed a 37.57 × 10-3 cm3m/m2/day/Pa oxygen permeability, and it was significantly reduced to 5.65 × 10-3 cm3m/m2/day/Pa representing a 665% reduction.


Asunto(s)
Embalaje de Alimentos , Grafito , Nanopartículas , Proteínas de Plantas , Resistencia a la Tracción , Embalaje de Alimentos/instrumentación , Grafito/química , Nanopartículas/química , Proteínas de Plantas/química , Brassica napus/química , Permeabilidad , Oxidación-Reducción
4.
Molecules ; 29(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474634

RESUMEN

The inclusion of protein in the regular human diet is important for the prevention of several chronic diseases. In the search for novel alternative protein sources, plant-based proteins are widely explored from a sustainable and ecological point of view. Duckweed (Lemna minor), also known as water lentil, is an aquatic plant with potential applications for human consumption due to its protein content and carbohydrate contents. Among all the conventional and novel protein extraction methods, the utilization of ultrasound has attracted the attention of scientists because of its effects on improving protein extraction and its functionalities. In this work, a Box-Behnken experimental design was proposed to optimize the alkaline extraction of protein from duckweed. In addition, an exploration of the effects of ultrasound on the morphological, structural, and functional properties of the extracted protein was also addressed. The optimal extraction parameters were a pH of 11.5 and an ultrasound amplitude and processing time of 60% and 20 min, respectively. These process conditions doubled the protein content extracted in comparison to the value from the initial duckweed sample. Furthermore, the application of ultrasound during the extraction of protein generated changes in the FTIR spectra, color, and structure of the duckweed protein, which resulted in improvements in its solubility, emulsifying properties, and foaming capacity.


Asunto(s)
Araceae , Contaminantes Químicos del Agua , Humanos , Contaminantes Químicos del Agua/análisis , Agua/metabolismo
6.
Heliyon ; 9(11): e21938, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027992

RESUMEN

Canola (Brassica napus L.) meal represents a prominent alternative plant-based source for protein isolation. This work aimed to investigate the combined effect of extraction and purification methods for the production of canola protein isolates (CPIs). CPIs were characterized in terms of process yield, protein recovery, basic composition, amino acid profile, in vitro protein digestibility, techno-functional properties, structural properties, and molecular features. The results showed that the Alk-Uf method enhanced yield (16.23 %) and protein recovery (34.88 %). Meanwhile, the Et-Alk-Uf method exhibited the highest crude protein (89.71 %) and free amino nitrogen (4.34 mg g protein-1) contents. Furthermore, protein digestibility (95.5 %) and protein digestibility corrected amino acid score (1.0) were improved using the Et-Alk-Ac method. Conversely, the amino acid composition, secondary structure, and electrophoretic profiles were generally similar for all CPIs. The Alk-Uf and Et-Alk-Uf methods produced isolates with the highest water solubility (∼39.18 %), water absorption capacity (∼3.86 g water g protein-1), oil absorption capacity (∼2.77 g oil g protein-1), and foaming capacity (∼505.26 %). Finally, the foaming stability (93.75 %) and foaming density (34.38 %) were increased when employing the Alk-Ac method. These findings suggest that, in general, the Alk-Uf and Et-Alk-Uf methods can be used to obtain CPIs with high added value for use in food formulations.

7.
Heliyon ; 9(11): e22475, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38028015

RESUMEN

Oligosaccharides are significant in mammalian milk, where they serve as prebiotics that promote the growth of beneficial gut bacteria in infants. Comprehensive research of milk oligosaccharides requires precise and validated analytical methods for compositional studies. To address this need, the focus of our study was to develop and validate an analytical method using UPLC-MS/MS to quantify seven specific oligosaccharides found in mammalian milk. The developed and optimized method has adequate linearity, accuracy, and precision parameters. The detection (LOD) and quantification (LOQ) limits for the seven compounds ranged from 0.0018 to 0.0030 µg/mL and 0.0054-0.0063 µg/mL, respectively. The sample preparation method yielded recovery rates above 90.5 %. Furthermore, no significant matrix effect was observed. The validated method was successfully applied to human, goat, and bovine milk samples, demonstrating its proficiency in identifying variances in the concentration of oligosaccharides across different mammals. This versatile method will allow future research about factors affecting oligosaccharide composition.

8.
J Food Sci ; 88(11): 4472-4482, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37799063

RESUMEN

Tamales are a traditional dish rich in fat and carbohydrates with increasing popularity. The present study aimed to investigate the use of agave inulin powder (AIP) as a potential fat replacer in tamales. The effect of replacing 0%, 33%, 66%, and 100% (w/w) of fat with AIP was evaluated in the physicochemical, sensory, and nutritional features of tamales. The fat content of tamales decreased up to 88% in AIP tamales, whereas total dietary fiber (TDF) increased up to 14%. TDF in AIP tamales had a higher proportion of soluble dietary fiber (SDF). Moreover, results indicated that both insoluble and SDF were formed during the processing of tamales. Fat replacement led to a reduction of up to 26% in the calorie load of tamales. Fourier transform infrared spectroscopy analysis confirmed changes in the absorption bands related to carbohydrates, with increments in peaks associated with inulin (936 and 862 cm-1 ), and inhibition of retrogradation when inulin was included. AIP addition resulted in tamales with lighter color. Fat replacement with AIP affected the texture of tamales increasing their softness, adhesiveness, and cohesiveness. In general, inulin positively affected the hedonic attributes and acceptance of tamales. Interestingly, full-fat tamales had a lower glycemic index and presented higher contents of resistant starch compared to tamales with AIP. Nevertheless, agave inulin may serve as a fat replacer yielding reduced-fat tamales with higher TDF and SDF and yielding a lower calorie load without significantly affecting the sensory acceptability of this traditional meal.


Asunto(s)
Agave , Sustitutos de Grasa , Inulina/análisis , Sustitutos de Grasa/análisis , Fibras de la Dieta/análisis , Índice Glucémico
9.
Foods ; 12(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37627988

RESUMEN

Ultrasound-assisted extraction (UAE) is an efficient and sustainable method for extracting bioactive compounds from agro-industrial by-products. Moreover, it has been reported that ultraviolet A (UVA) radiation can induce the biosynthesis and accumulation of bioactive phenolic compounds. This study optimized the efficiency of ultrasound-assisted extraction (UAE) for recovering ultraviolet A (UVA)-induced phenolic compounds in strawberry by-products (RF-N). The impact of three factors (solid-liquid ratio, ethanol concentration, and ultrasound power) on total phenolic compound (TPC) kinetics using Peleg's model was investigated. The developed model showed a suitable fit for both RF-N and strawberry by-products treated with UVA (RF-E). The optimal UAE conditions obtained were of a 1:30 ratio, 46% ethanol, and 100% ultrasound power, resulting in an average yield of 13 g total phenolics kg-1. The bioaccessibility of phenolic compounds during in-vitro digestion was 36.5%, with agrimoniin being the predominant compound. UAE combined with UVA treatment increased the bioactivity of RF extracts, displaying significant anti-proliferative effects on HT29 and Caco-2 cancer cell lines, as well as anti-inflammatory potential and cellular antioxidant activity. The ultrasound proved to be a sustainable and effective technique for extracting phenolic compounds from RF, contributing to the valorization of strawberry agro-industrial by-products, and maximizing their nutraceutical potential.

10.
Front Nutr ; 10: 1183935, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37485394

RESUMEN

In the scientific literature there are different analyses of the nutritional profiles of maize tortillas, whether they are landraces or hybrid maize versus those made with dry masa flour (DMF). In general terms, there is agreement in the reported content of moisture. However, for the other nutrients, a great disparity is reported for each type of tortilla which may be due to various factors such as the type of maize or processing methods. In this study, the nutritional aspects of maize tortillas made with different genotypes (five hybrids, two varieties, five landraces, six hybrid mixtures and six dry masa flours) under controlled conditions, were compared. More than 30 characteristics were analyzed. High performance hybrids and varieties (HPHV) and landraces had the highest (p < 0.05) antioxidant capacity (58.8% free, 150.2% bound). In terms of vitamins contents, the tortillas produced from DMF contained 11.2 and 3.5 times more B1, 18.6 and 7.8 times more B2, and 2.7 and 5.3 times more B3 than HPHV and landraces respectively; and only in these samples was detected folic acid. DMF tortilla samples contained 1.75 times more sodium and 2.75 times more iron than the other groups, and 0.75 times less calcium than HPHV. Zinc was present in higher concentration (p < 0.05) in DMF tortilla samples. The landraces had the highest protein content (average 10.28%), but the tortillas produced from DMF presented the highest protein quality evaluated by protein digestibility-corrected amino acid score (PDCAAS) (p < 0.05) that represents 27, 25 and 19% more than hybrids mixture, HPHV and landraces, respectively. This work gives valuable information on how different types of grains differ in the nutritional quality affecting the final product to provide more elements in the decision-making of processors. There is no a perfect maize, but there are genotypes that can be combined as mixtures and the processing method to design superior nutritional tortillas and related products for populations that highly consume them and improve their human health.

11.
Foods ; 12(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37372516

RESUMEN

Different pigmented corn and sorghum types were evaluated to characterize their biophysical, nutraceutical, and technofunctional properties for the first time. Commercially pigmented (blue, purple, red, black, and yellow) popcorn (Zea mays var. everta) and sorghum (Sorghum bicolor L.) of yellow and red colors were analyzed. Biophysical and proximal analyses were performed using official methods. The nutraceutical profile included the total phenolic and anthocyanin content. In addition, rheological, structural, and morphological studies were conducted. The results demonstrated significant differences between the popcorn samples and grain types, especially in terms of their biophysical and proximate features. The nutraceutical profile revealed that these specialty grains contained higher concentrations of antioxidant compounds (up to 3-fold when compared with the other grains). The rheological analysis demonstrated that sorghum grains developed higher peak viscosities than popcorn. According to the structural assessments, the type A pattern displayed peaks at the interplanar spaces corresponding to the crystalline and amorphous regions in all the samples. The data obtained in this study provides a base to further investigate the products obtained using these biomaterials.

12.
Foods ; 12(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37174452

RESUMEN

Black bean hulls (BBH) are rich in phenolic compounds, such as anthocyanins, which can be incorporated into common staple foods such as maize tostadas, enhancing the nutraceutical properties of these products. This study incorporates black bean hulls to produce nixtamalized maize tostadas with nutraceutical properties. Nixtamalized corn flour (NCF) and black bean hulls (BBH) were characterized in terms of protein, fat, crude and dietary fiber, anthocyanin concentration, and different starch fractions. NCF and BBH depicted 53.7 and 16.8% of total digestible starch (TDS), respectively, and 1.2 and 7.6% of resistant starch (RS), in the same order. BBH was incorporated into nixtamalized flour at 10, 15, and 20% w/w, and the resulting dough was thermo-mechanically characterized. Tostadas with BBH had higher protein, dietary fiber, and anthocyanin concentrations. Enriched tostadas did not show significant changes in texture or other sensory characteristics. However, a reduction in total digestible starch (61.97 up to 59.07%), an increase in resistant starch (0.46 to 2.3% from control tostadas to 20% BBH tostadas), and a reduction in the predicted glycemic index (52 to 49), among other parameters, indicated that BBH is a suitable alternative for developing nutraceutical food products.

13.
Front Nutr ; 10: 1105619, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845062

RESUMEN

Introduction: Different analyses of the profiles of tortillas have been made using the traditional method, whether from landraces or hybrids versus those made with dry masa flour in which significant variability (p < 0.05) is reported in favor or against each type of tortilla which may be due to various factors such as the type of maize or the processing methods. Methods: Twenty-two samples including hybrids, hybrid mixtures, varieties, landraces and dry masa flours were processed to masa and tortilla under similar and controlled conditions and tortilla quality evaluated. In total, 70 characteristics were analyzed as physicochemical properties of the maize (e.g., hectoliter weight and dimensions), processability characteristics, masa characteristics [e.g. viscoamylographic parameters (RVA)], and quality parameters of tortillas (e.g., sensory performance, color and texture). Results and discussión: The studied materials presented variability among genotypes, especially within landraces. The physical and chemical properties of corn affected the processability and quality characteristics of tortillas (sensory and composition), and it was found that high producing hybrids and varieties (p < 0.05) were better and more consistent in all stages of processing. Forty percent of the landraces yielded masa with poor machinability. Conclusion: Landraces averaged 1.27 percentage points more protein (p < 0.05) than other analyzed samples and they comparatively yielded tortillas with lower extensibility (12.34%) compared to counterparts produced from hybrids and varieties. This work provides valuable information on how the chemical and physical characteristics of different types of maize genotypes affect the nixtamalization process and the quality of tortillas to provide more elements in the selection of the most appropriate genotypes for tortilla production.

14.
Foods ; 12(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38231666

RESUMEN

Because edible insects (EI) have been, in recent years, recommended as a nutritious animal protein food with enormous environmental advantages over other sources of animal protein for human consumption, studies aimed at investigating the consumer perspective have become more prominent. Hence, this study intended to examine the perceptions of participants from different countries about the commercialization and economic and social impacts of edible insects. The study was made using a questionnaire survey, and data were collected in Brazil, Croatia, Greece, Latvia, Lebanon, Lithuania, Mexico, Poland, Portugal, Romania, Serbia, Slovenia, Spain, and Turkey. The final number of received answers was 7222 participants. For the treatment of the results, different statistical techniques were used: factor analysis, internal reliability by Cronbach's alpha, cluster analysis, ANOVA to test differences between groups, and Chi-square tests. The results obtained confirmed the validity of the scale, constituted by 12 out of the 14 items initially considered, distributed by 4 factors: the first related to the economic impact of EIs, the second related to the motivation for consumption of EIs, the third related to the places of purchase of EIs, and the fourth corresponding to a question presented to the participants as a false statement. A cluster analysis allowed identifying three clusters, with significant differences between them according to all the sociodemographic variables tested. Also, it was found that the participants expressed an exceptionally high level of agreement with aspects such as the difficulty in finding EIs on sale, knowledge acting as a strong motivator for EI consumption, and the role of personalities and influencers in increasing the will to consume EIs. Finally, practically all sociodemographic variables were found to be significantly associated with perceptions (country, sex, education, living environment, and income), but not age. In conclusion, the perceptions about EI commercialization were investigated and revealed differences among samples originating from different countries. Moreover, the sociodemographic characteristics of the participants were found to be strongly associated with their perceptions.

15.
Front Nutr ; 10: 1325863, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38455872

RESUMEN

Human Breast Milk (HBM) is widely acknowledged as the best nutritional source for neonates. Data indicates that, in 2019, 83.2% of infants in the United States received breast milk at birth, slightly reducing to 78.6% at 1 month. Despite these encouraging early figures, exclusive breastfeeding rates sharply declined, dropping to 24.9% by 6 months. This decline is particularly pronounced when direct breastfeeding is challenging, such as in Neonatal Intensive Care Units (NICU) and for working mothers. Given this, it is vital to explore alternative breast milk preservation methods. Technologies like Holder Pasteurization (HoP), High-Temperature Short-Time Pasteurization (HTST), High-Pressure Processing (HPP), UV radiation (UV), and Electric Pulses (PEF) have been introduced to conserve HBM. This review aims to enhance the understanding of preservation techniques for HBM, supporting the practice of extended exclusive breastfeeding. It explicitly addresses microbial concerns, focusing on critical pathogens like Staphylococcus aureus, Enterococcus, Escherichia coli, Listeria monocytogenes, and Cytomegalovirus, and explores how various preservation methods can mitigate these risks. Additionally, the review highlights the importance of retaining the functional elements of HBM, particularly its immunological components such as antibodies and enzymes like lysozyme and Bile Salt Stimulated Lipase (BSSL). The goal is to provide a comprehensive overview of the current state of HBM treatment, critically assess existing practices, identify areas needing improvement, and advocate for extended exclusive breastfeeding due to its vital role in ensuring optimal nutrition and overall health in infants.

16.
J Food Sci ; 87(9): 3766-3780, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35904200

RESUMEN

This study aimed to evaluate the potential of 10%, 20%, and 30% of raw (ARF) and germinated (AGF) ayocote bean flour as a partial substitute for wheat flour in breadmaking. Substitution with both ayocote bean flours modified the water absorption and development time while maintaining the dough stability. Supplemented breads had 13%, 51%, and 132% higher protein, mineral, and crude fiber content, respectively, than control bread (100% wheat). The breadmaking features, color and crumb firmness, were affected by the substitution level. Sensory analysis revealed that germination could improve the taste and smell of breads produced with ayocote bean flour. The sensory attribute scores of 10% AGF bread were comparable to those of the control bread. Supplementation reduced the in vitro protein digestibility, although the effect was less pronounced in 10% ARF and 20% AGF breads. The limiting amino acid score of supplemented breads increased up to 70%, which improved their protein digestibility-corrected amino acid scores. Supplementation with 20% or 30% of both ARF and AGF increased resistant starch values and decreased the total digestible starch of breads. Thus, the results showed that substituting wheat with ARF or AGF improves the nutritional properties of bread. However, low substitution levels should be selected to avoid a considerable decrease in physical and sensory properties. PRACTICAL APPLICATION: Substituting wheat flour with ayocote bean flour improved the nutritional value of bread. Germination of ayocote beans decreased the cooking stability of composite dough. Bread fortified with ayocote flour had high levels of essential amino acids. Bread with raw or germinated ayocote flours had high limiting amino acid scores. Composite bread had high resistant starch and low total digestible starch.


Asunto(s)
Harina , Phaseolus , Aminoácidos , Aminoácidos Esenciales , Pan/análisis , Harina/análisis , Almidón Resistente , Triticum/química , Agua
17.
Front Nutr ; 9: 874763, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35662955

RESUMEN

Nowadays, dairy products, especially fermented products such as yogurt, fromage frais, sour cream and custard, are among the most studied foods through tribological analysis due to their semi-solid appearance and close relationship with attributes like smoothness, creaminess and astringency. In tribology, dairy products are used to provide information about the friction coefficient (CoF) generated between tongue, palate, and teeth through the construction of a Stribeck curve. This provides important information about the relationship between friction, food composition, and sensory attributes and can be influenced by many factors, such as the type of surface, tribometer, and whether saliva interaction is contemplated. This work will review the most recent and relevant information on tribological studies, challenges, opportunity areas, saliva interactions with dairy proteins, and their relation to dairy product sensory.

18.
Micromachines (Basel) ; 14(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36677116

RESUMEN

Light-based bioprinter manufacturing technology is still prohibitively expensive for organizations that rely on accessing three-dimensional biological constructs for research and tissue engineering endeavors. Currently, most of the bioprinting systems are based on commercial-grade-based systems or modified DIY (do it yourself) extrusion apparatuses. However, to date, few examples of the adoption of low-cost equipment have been found for light-based bioprinters. The requirement of large volumes of bioinks, their associated cost, and the lack of information regarding the parameter selection have undermined the adoption of this technology. This paper showcases the retrofitting and assessing of a low-cost Light-Based 3D printing system for tissue engineering. To evaluate the potential of a proposed design, a manufacturability test for different features, machine parameters, and Gelatin Methacryloyl (GelMA) concentrations for 7.5% and 10% was performed. Furthermore, a case study of a previously seeded hydrogel with C2C12 cells was successfully implemented as a proof of concept. On the manufacturability test, deviational errors were found between 0.7% to 13.3% for layer exposure times of 15 and 20 s. Live/Dead and Actin-Dapi fluorescence assays after 5 days of culture showed promising results in the cell viability, elongation, and alignment of 3D bioprinted structures. The retrofitting of low-cost equipment has the potential to enable researchers to create high-resolution structures and three-dimensional in vitro models.

19.
Food Nutr Res ; 662022.
Artículo en Inglés | MEDLINE | ID: mdl-36590858

RESUMEN

Introduction: Public health professionals established a direct link between obesity and the rise in high caloric beverage intake. Current recommendations promote the elimination of sweet fruit drinks from the population's diet. One way of evading this is by modifying the drink's nutritional characteristics regarding nutrient uptake and utilization. Objectives: evaluate the protein quality of a soy/maize protein (SMP) and its physiological effects on nutrient intake and to assess glycemic indexes (GIs) of mango based drinks prepared with sucrose or stevia. Materials and methods: Mango drinks were supplemented with different sources of protein (three SMP thermally treated to contain different urease activities (UA) or whey protein concentrate (WPC)) that were sweetened with sucrose or stevia/sucralose. The protein digestibility, net protein absorption (NPA), biological value (BV), net protein utilization (NPU) value and protein efficiency ratio (PER) were assessed with weanling rats. Moreover, the GIs of the mango drinks were measured in the same animal model. Results: PER and NPA evaluated in a rat model showed that increased levels of UA decreased Biological (BV) and Net Protein Utilization (NPU) values. The GIs of the mango drinks significantly diminished with the addition of 3.5% of SMP, but unexpectedly the substitution of sucrose by stevia/sucralose did not significantly change the glycemic response. Conclusion: the SMP isolate can be used to improve the nutritional profile and lower GIs of mango drinks.

20.
Compr Rev Food Sci Food Saf ; 20(6): 5722-5741, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34643023

RESUMEN

Three-dimensional food printing (3DFP) uses additive manufacturing concepts to fabricate customized designed products with food ingredients in powder, liquid, dough, or paste presentations. In some cases, it uses additives, such as hydrocolloids, starch, enzymes, and antibrowning agents. Chocolate, cheese, sugar, and starch-based materials are among the most used ingredients for 3DFP, and there is a broad and growing interest in meat-, fruit-, vegetable-, insect-, and seaweed-based alternative raw materials. Here, we reviewed the most recent published information related to 3DFP for novel uses, including personalized nutrition and health-oriented applications, such as the use of 3D-printed food as a drug vehicle, and four-dimensional food printing (4DFP). We also reviewed the use of this technology in aesthetic food improvement, which is the most popular use of 3DFP recently. Finally, we provided a prospective and perspective view of this technology. We also reflected on its multidisciplinary character and identified aspects in which social and regulatory affairs must be addressed to fulfill the promises of 3DFP in human health improvement.


Asunto(s)
Chocolate , Impresión Tridimensional , Alimentos , Humanos , Estado Nutricional , Almidón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA