Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Spinal Cord Med ; : 1-9, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37010833

RESUMEN

OBJECTIVE: Spinal cord injury (SCI) interrupts motor, sensory, and autonomic pathways, impairing mobility and increasing heat storage during warm seasonal temperatures due to compromised autonomic control of vasodilation and sweating and recognition of body temperature. Thus, persons with SCI are more vulnerable to hyperthermia and its adverse effects. However, information regarding how persons with SCI perceive warmer seasons and whether thermal discomfort during warmer seasons restricts routine activities remains anecdotal. DESIGN: Cross-sectional, self-report surveys. SETTING: VA Medical Center and Kessler Institute for Rehabilitation. PARTICIPANTS: Three groups of 50 participants each: tetraplegia, paraplegia, and matched non-SCI controls. OUTCOME MEASURES: Tetraplegia, paraplegia, and control groups responded "yes" or "no" when asked whether warm seasonal temperatures adversely affected comfort or participation in routine activities. RESULTS: The percentage of responses differed among tetraplegia, paraplegia, and control groups when asked if they required ≥20 min to cool down once overheated (44 vs. 20 vs. 12%; X2 = 14.7, P < 0.001), whether heat-related discomfort limited their ability to go outside (62 vs. 34 vs. 32%; X2 = 11.5, P = 0.003), if they needed to use a water-mister because of the heat (70 vs. 44 vs. 42%; X2 = 9.8, P = 0.008), and if heat-related discomfort limited participation in social activities (40 vs. 20 vs. 16%; X2 = 8.7, P = 0.01). CONCLUSION: Warmer seasonal temperatures had a greater negative impact on reported comfort and daily activities of persons with SCI than non-SCI controls. Those with tetraplegia were most adversely affected. Our findings warrant increasing awareness and identifying interventions to address the vulnerability of persons with SCI to hyperthermia.

4.
Int J Radiat Oncol Biol Phys ; 87(4): 777-84, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24064316

RESUMEN

PURPOSE: Altered levels of extracellular superoxide dismutase (EC-SOD) and cranial irradiation have been shown to affect hippocampal neurogenesis. However, previous studies were only conducted in male mice, and it was not clear if there was a difference between males and females. Therefore, female mice were studied and the results compared with those generated in male mice from an earlier study. METHODS AND MATERIALS: Female wild-type, EC-SOD-null (KO), and EC-SOD bigenic mice with neuronal-specific expression of EC-SOD (OE) were subjected to a single dose of 5-Gy gamma rays to the head at 8 weeks of age. Progenitor cell proliferation, differentiation, and long-term survival of newborn neurons were determined. RESULTS: Similar to results from male mice, EC-SOD deficiency and irradiation both resulted in significant reductions in mature newborn neurons in female mice. EC-SOD deficiency reduced long-term survival of newborn neurons whereas irradiation reduced progenitor cell proliferation. Overexpression of EC-SOD corrected the negative impacts from EC-SOD deficiency and irradiation and normalized the production of newborn neurons in OE mice. Expression of neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 were significantly reduced by irradiation in wild-type mice, but the levels were not changed in KO and OE mice even though both cohorts started out with a lower baseline level. CONCLUSION: In terms of hippocampal neurogenesis, EC-SOD deficiency and irradiation have the same overall effects in males and females at the age the studies were conducted.


Asunto(s)
Irradiación Craneana , Hipocampo/efectos de la radiación , Neurogénesis/efectos de la radiación , Neuronas/citología , Superóxido Dismutasa/deficiencia , Factores de Edad , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/efectos de la radiación , Diferenciación Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Giro Dentado/irrigación sanguínea , Giro Dentado/efectos de la radiación , Espacio Extracelular/enzimología , Femenino , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Microvasos/efectos de la radiación , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de la radiación , Neurogénesis/fisiología , Neuronas/enzimología , Neurotrofina 3/metabolismo , Neurotrofina 3/efectos de la radiación , Tolerancia a Radiación/fisiología , Factores Sexuales , Superóxido Dismutasa/genética
5.
Int J Spine Surg ; 6: 1-7, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-25694863

RESUMEN

BACKGROUND: Pure moment testing is a common method used in cadaveric spine testing. The fundamental basis for the widespread acceptance of applying a pure moment is uniform loading along the column of the spine. To our knowledge, this protocol has not been experimentally verified on a multi-degree of freedom testing apparatus. Given its ubiquitous use in spine biomechanics laboratories, confirmation of this comparative cadaveric test protocol is paramount. METHODS: Group A specimens (n =13) were used to test the pure moment protocol, by use of 3 constructs that changed the number of involved vertebrae, orientation, and rigidity of the spine construct. Group B specimens (n = 6) were used to determine whether potting orientation, testing order, or degradation affected the range of motion (ROM) by use of 8 constructs. Each group was subjected to 3 cycles of flexion-extension, lateral bending, and axial torsion. The data from the third cycle were used to calculate the ROM for each method. RESULTS: Group A testing resulted in significant differences in ROM across the 3 constructs for lateral bending and axial torsion (P < .02) and trended toward a difference for flexion-extension (P = .055). Group B testing showed an increase in ROM across 8 constructs (P < .04) but no significant difference due to the orientation change. CONCLUSION: The increased ROM across constructs observed in both groups indicates that the cause is likely the testing order or degradation of the specimens, with orientation having no observed effect. The data do not invalidate pure moment testing, and its use should persist.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA