Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Nat Rev Cardiol ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039178

RESUMEN

The accessibility of the retina with the use of non-invasive and relatively low-cost ophthalmic imaging techniques and analytics provides a unique opportunity to improve the detection, diagnosis and monitoring of systemic diseases. The National Heart, Lung, and Blood Institute conducted a workshop in October 2022 to examine this concept. On the basis of the discussions at that workshop, this Roadmap describes current knowledge gaps and new research opportunities to evaluate the relationships between the eye (in particular, retinal biomarkers) and the risk of cardiovascular diseases, including coronary artery disease, heart failure, stroke, hypertension and vascular dementia. Identified gaps include the need to simplify and standardize the capture of high-quality images of the eye by non-ophthalmic health workers and to conduct longitudinal studies using multidisciplinary networks of diverse at-risk populations with improved implementation and methods to protect participant and dataset privacy. Other gaps include improving the measurement of structural and functional retinal biomarkers, determining the relationship between microvascular and macrovascular risk factors, improving multimodal imaging 'pipelines', and integrating advanced imaging with 'omics', lifestyle factors, primary care data and radiological reports, by using artificial intelligence technology to improve the identification of individual-level risk. Future research on retinal microvascular disease and retinal biomarkers might additionally provide insights into the temporal development of microvascular disease across other systemic vascular beds.

2.
Transl Vis Sci Technol ; 12(8): 2, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37531114

RESUMEN

Purpose: The purpose of this study was to examine the sensitivity of quantitative metrics of the retinal vasculature derived from optical coherence tomography angiography (OCT-A) images. Methods: Full retinal vascular slab OCT-A images were obtained from 94 healthy participants. Capillary loss, at 1% increments up to 50%, was simulated by randomly removing capillary segments (1000 iterations of randomized loss for each participant at each percent loss). Thirteen quantitative metrics were calculated for each image: foveal avascular zone (FAZ) area, vessel density, vessel complexity index (VCI), vessel perimeter index (VPI), fractal dimension (FD), and parafoveal intercapillary area (PICA) measurements with and without the FAZ (mean PICA, summed PICA, PICA regularity, and PICA standard deviation [PICA SD]). The sensitivity of each metric was calculated as the percent loss at which 80% of the iterations for a participant fell outside of two standard deviations from the sample's normative mean. Results: The most used OCT-A metrics, FAZ area and vessel density, were not significantly different from normative values until 27.69% and 16.00% capillary loss, respectively. Across the remaining metrics, metric sensitivity ranged from 6.37% (PICA SD without FAZ) to 39.78% (Summed PICA without FAZ). Conclusions: The sensitivity of vasculature metrics for detecting random capillary loss varies substantially. Further efforts simulating different patterns of capillary loss are needed for comparison. Additionally, mapping the repeatability of metrics over time in a normal population is needed to further define metric sensitivity. Translational Relevance: Quantitative metrics vary in their ability to detect vascular abnormalities in OCT-A images. Metric choice in screening studies will need to balance expected capillary abnormalities and the quality of the OCT-A images being used.


Asunto(s)
Mácula Lútea , Tomografía de Coherencia Óptica , Humanos , Tomografía de Coherencia Óptica/métodos , Benchmarking , Vasos Retinianos/diagnóstico por imagen , Angiografía con Fluoresceína/métodos
3.
Am J Ophthalmol Case Rep ; 30: 101836, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37124154

RESUMEN

Purpose: To describe the spatial distribution and morphologic characteristics of macrophage-like cells called hyalocytes in the posterior vitreous cortex of a patient with unilateral partial posterior vitreous detachment (PVD) using coronal plane en face optical coherence tomography (OCT). Observations: A 54-year-old male with sickle cell disease (HbSC genotype) presented with a partial PVD in one eye. Rendered volumes of a slab extending from 600 µm to 3 µm anterior to the inner limiting membrane (ILM) revealed hyperreflective foci in the detached posterior vitreous cortex suspended anterior to the macula, likely representing hyalocytes. In the fellow eye without PVD, hyperreflective foci were located 3 µm anterior to the ILM. The morphology of the cells in the eye with PVD varied between a ramified state with multiple elongated processes and a more activated state characterized by a plump cell body with fewer retracted processes. In the same anatomical location, the hyperreflective foci were 10-fold more numerous in the patient with vaso-occlusive disease than in an unaffected, age-matched control. Conclusions and Importance: Direct, non-invasive, and label-free techniques of imaging cells at the vitreoretinal interface and within the vitreous body is an emerging field. The findings from this case report suggest that coronal plane en face OCT can be used to provide a detailed and quantitative characterization of cells at the human vitreo-retinal interface in vivo. Importantly, this case report demonstrates that 3D-OCT renderings can enhance visualization of these cells in relation to the ILM, which may provide clues concerning the identity and contribution of these cells to the pathogenesis of vitreo-retinal diseases.

4.
Am J Ophthalmol Case Rep ; 30: 101846, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37114189

RESUMEN

Purpose: Pigmented paravenous chorioretinal atrophy (PPCRA) is a rare retinal disease with inflammatory or infectious associations affecting the retinal pigment epithelium (RPE) and choriocapillaris. While the clinical manifestations and imaging findings are well-documented in the literature, no reports exist describing potential biomarkers of intraocular inflammation or ischemia in this condition, such as the presence of posterior vitreous cortex hyalocytes. Observations: We report a case of a 26-year-old female who presented with progressive peripheral vision loss in both eyes over one year. Dilated fundus examination revealed bilateral, asymmetric bone-spicule pigmentary changes along the retinal veins, which appeared more advanced in the left eye. Optical coherence tomography (OCT) revealed the presence of numerous hyalocytes in both eyes 3 µm anterior to the inner limiting membrane (ILM). The morphology of the hyalocytes differed between the two eyes, suggesting different levels of activation related to the stage of the disease. Specifically, the left eye, with more advanced disease, exhibited hyalocytes with multiple elongated processes consistent with a quiescent state, whereas the right eye, with the less advanced disease state, exhibited amoeboid-appearing hyalocytes suggestive of more active inflammation. Conclusions: This case illustrates how hyalocyte morphology may reflect the underlying activity of an indolent retinal degeneration and provide a useful biomarker of disease progression.

5.
Biomed Opt Express ; 14(1): 387-428, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36698659

RESUMEN

Twenty-five years ago, adaptive optics (AO) was combined with fundus photography, thereby initiating a new era in the field of ophthalmic imaging. Since that time, clinical applications of AO ophthalmoscopy to investigate visual system structure and function in both health and disease abound. To date, AO ophthalmoscopy has enabled visualization of most cell types in the retina, offered insight into retinal and systemic disease pathogenesis, and been integrated into clinical trials. This article reviews clinical applications of AO ophthalmoscopy and addresses remaining challenges for AO ophthalmoscopy to become fully integrated into standard ophthalmic care.

6.
Eur J Ophthalmol ; 33(6): NP118-NP121, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36377274

RESUMEN

INTRODUCTION: Vitreous cortex hyalocytes (VCH) are resident macrophage cells that provide immunosurveillance, respond to tissue injury and inflammation, and help maintain the transparency of the media. In this case report we demonstrate the use of en face optical coherence tomography (OCT) to image VCH in vivo in a patient presenting with PAMM secondary to antiphospholipid syndrome. CASE DESCRIPTION: A 38-year-old female with no known medical history presented with complaints of visual disturbances in the right eye. OCT revealed hyperreflective bands in the IPL and INL nasal to the fovea. A diagnosis of PAMM was made. Work-up revealed elevated titers of antiphospholipid antibodies. En face OCT revealed a decline in the inflammatory activation over a seven-month period as evidenced by changes in VCH distribution and morphology. CONCLUSIONS: Our findings suggest that monitoring changes in the distribution and morphology of VCH could have a potential clinical utility for assessing disease severity, predicting recovery, and early recognition of treatment response in various inflammatory ocular pathologies such as PAMM.

7.
Expert Rev Ophthalmol ; 17(4): 263-280, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466118

RESUMEN

Introduction: Hyalocytes are sentinel macrophages residing within the posterior vitreous cortex anterior to the retinal inner limiting membrane (ILM). Following anomalous PVD and vitreoschisis, hyalocytes contribute to paucicellular (vitreo-macular traction syndrome, macular holes) and hypercellular (macular pucker, proliferative vitreo-retinopathy, proliferative diabetic vitreo-retinopathy) diseases. Areas covered: Studies of human tissues employing dark-field, phase, and electron microscopy; immunohistochemistry; and in vivo imaging of human hyalocytes. Expert opinion: Hyalocytes are important in early pathophysiology, stimulating cell migration and proliferation, as well as subsequent membrane contraction and vitreo-retinal traction. Targeting hyalocytes early could mitigate advanced disease. Ultimately, eliminating the role of vitreous and hyalocytes may prevent proliferative vitreo-retinal diseases entirely.

8.
Ophthalmol Sci ; 2(4): 100196, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36531581

RESUMEN

Purpose: Clinical OCT angiography (OCTA) of the retinal microvasculature offers a quantitative correlate to systemic disease burden and treatment efficacy in sickle cell disease (SCD). The purpose of this study was to use the higher resolution of adaptive optics scanning light ophthalmoscopy (AOSLO) to elucidate OCTA features of parafoveal microvascular compromise identified in SCD patients. Design: Case series of 11 SCD patients and 1 unaffected control. Participants: A total of 11 eyes of 11 SCD patients (mean age, 33 years; range, 23-44; 8 female, 3 male) and 1 eye of a 34-year-old unaffected control. Methods: Ten sequential 3 × 3 mm parafoveal OCTA full vascular slab scans were obtained per eye using a commercial spectral domain OCT system (Avanti RTVue-XR; Optovue). These were used to identify areas of compromised perfusion near the foveal avascular zone (FAZ), designated as regions of interest (ROIs). Immediately thereafter, AOSLO imaging was performed on these ROIs to examine the cellular details of abnormal perfusion. Each participant was imaged at a single cross-sectional time point. Additionally, 2 of the SCD patients were imaged prospectively 2 months after initial imaging to study compromised capillary segments across time and with treatment. Main Outcome Measures: Detection and characterization of parafoveal perfusion abnormalities identified using OCTA and resolved using AOSLO imaging. Results: We found evidence of abnormal blood flow on OCTA and AOSLO imaging among all 11 SCD patients with diverse systemic and ocular histories. Adaptive optics scanning light ophthalmoscopy imaging revealed a spectrum of phenomena, including capillaries with intermittent blood flow, blood cell stasis, and sites of thrombus formation. Adaptive optics scanning light ophthalmoscopy imaging was able to resolve single sickled red blood cells, rouleaux formations, and blood cell-vessel wall interactions. OCT angiography and AOSLO imaging were sensitive enough to document improved retinal perfusion in an SCD patient 2 months after initiation of oral hydroxyurea therapy. Conclusions: Adaptive optics scanning light ophthalmoscopy imaging was able to reveal the cellular details of perfusion abnormalities detected using clinical OCTA. The synergy between these clinical and laboratory imaging modalities presents a promising avenue in the management of SCD through the development of noninvasive ocular biomarkers to prognosticate progression and measure the response to systemic treatment.

9.
Case Rep Hematol ; 2022: 6079631, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36046774

RESUMEN

Sickle cell disease (SCD) exists on a phenotypic spectrum with variable genetic expressivity, making it difficult to assess an individual patient's risk of complications at any particular point in time. Current and emerging SCD treatments, including CRISPR-based gene editing, result in a variable proportion of affected red blood cells (RBCs) still vulnerable to sickling. Clinical serological indicators of disease such as hemoglobin, indirect bilirubin, and reticulocyte count and clinical metrics including number of emergency department visits and hospitalizations over time often fall short in their ability to objectively quantify ischemic disease activity and efficacy of treatments. Clearly, better clinical biomarkers are needed. The rapidly developing field of oculomics leverages the transparent nature of the ocular tissue to directly study the retinal microvasculature in order to characterize the status of systemic diseases. In this case report, we demonstrate the ability of optical coherence tomography angiography (OCT-A) to detect and measure micro-occlusive events within the retinal capillary bed before and after RBC exchange transfusion and following CRISPR-based gene editing, as an indicator of systemic ischemic disease activity and measure of treatment efficacy. The implications of these findings are discussed.

10.
Biomed Opt Express ; 13(3): 1755-1773, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35414987

RESUMEN

Vitreous cortex hyalocytes are resident macrophage cells that help maintain the transparency of the media, provide immunosurveillance, and respond to tissue injury and inflammation. In this study, we demonstrate the use of non-confocal quadrant-detection adaptive optics scanning light ophthalmoscopy (AOSLO) to non-invasively visualize the movement and morphological changes of the hyalocyte cell bodies and processes over 1-2 hour periods in the living human eye. The average velocity of the cells 0.52 ± 0.76 µm/min when sampled every 5 minutes and 0.23 ± 0.29 µm/min when sampled every 30 minutes, suggesting that the hyalocytes move in quick bursts. Understanding the behavior of these cells under normal physiological conditions may lead to their use as biomarkers or suitable targets for therapy in eye diseases such as diabetic retinopathy, preretinal fibrosis and glaucoma.

11.
Clin Ophthalmol ; 16: 867-875, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35340669

RESUMEN

Purpose: Hemodynamic changes surrounding the optic nerve head are known to occur in thyroid-related orbitopathy (TRO). This pilot study explores the capillary and non-capillary peripapillary perfusion changes of the retina in TRO eyes without dysthyroid optic neuropathy (DON) using optical coherence tomography angiography (OCT-A). Methods: Non-capillary and capillary peripapillary perfusion densities were calculated using single 4.5 × 4.5mm en face "RPC layer" OCT-A scans of 8 TRO patients without DON (8 eyes, mean age 40.6 years, range 23-69 years). Results were compared to a previously published dataset of 133 healthy controls (133 eyes, mean 41.5 years, range 11-83 years). The strength of association was measured between OCT-A perfusion densities and clinical measures of TRO. Results: Non-capillary peripapillary perfusion density in TRO eyes was found to be significantly decreased compared to healthy controls (TRO group 15.4 ± 2.9% vs controls 21.5 ± 3.1%; p < 0.0001). Capillary peripapillary perfusion densities showed no significant difference (TRO group 42.5 ± 1.8% vs controls 42.5 ± 1.5%; p = 1.0). Clinical measures of disease did not correlate well with OCT-A perfusion densities (p>0.05). Conclusion: These findings may represent decreased blood flow and subclinical ischemia to the optic nerve. We discuss possible pathogenic mechanisms of thyroid-related vasculopathy, including vessel wall thickening due to immunologically-induced media enlargement.

12.
Am J Ophthalmol Case Rep ; 25: 101394, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35198818

RESUMEN

PURPOSE: To report the impact of intravitreal anti-vascular endothelial growth factor (VEGF) therapy on a retinal capillary hemangioma (RCH) using clinical OCT angiography (OCT-A) in addition to standard imaging modalities. OBSERVATIONS: A 25-year-old male patient with Von Hippel-Lindau (VHL) disease presented with a history of bilateral RCH. No view was present in the right eye. Examination of the left eye revealed six peripheral RCH, the smallest of which was temporal to the macula with active exudation. This RCH was thought to be the source of cystoid macular edema (CME) involving the fovea, and therefore, the source of vision decline. 11 injections of 1.25mg of Bevacizumab EA across 14-month was given. Comparison of the pre- and post-treatment OCT-A at the temporal RCH showed a reduction of CME and regression of RCH. CONCLUSION: Anti-VEGF therapy appeared to stabilize the visual acuity and produce partial regression of RCH. It offers a safe option when visual acuity is threatened. OCT and OCT-A have the ability to document the impact of antiangiogenic therapy on RCH. 3D renderings of OCT-A offer enhanced sensitivity to recognition of structural and functional changes of RCH which may prove useful for monitoring treatment response.

13.
Case Rep Ophthalmol Med ; 2022: 5275309, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35178261

RESUMEN

Retinal surface macrophages play key roles in the regulation of immune response, maintenance of vitreous clarity, and tissue repair. We examined the variation of parafoveal surface macrophages in a thyroid eye disease (TED) patient before and after treatment with teprotumumab (Tepezza, Horizon therapeutics). Pre- and posttreatment parafoveal surface macrophages were imaged using clinical en face OCT, and their density was assessed using a novel cell density mapping technique. Pretreatment, surface macrophage cell density was high. Macrophages had a nonuniform spatial distribution, and their appearance was round with few protrusions, consistent with an "activated" state. Posttreatment, cell density decreased. The macrophages were regularly spaced and had a ramified appearance and filopodia-like processes, consistent with a "quiescent" state. Surface macrophage density decreased as the Clinical Activity Score (CAS) decreased with teprotumumab treatment, suggesting a potential association of these cells with an underlying intraocular and retinal inflammatory process previously not described in TED.

14.
Expert Rev Ophthalmol ; 17(4): 233-248, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36632192

RESUMEN

Introduction: Hyalocytes have been recognized as resident tissue macrophages of the vitreous body since the mid-19th century. Despite this, knowledge about their origin, turnover, and dynamics is limited. Areas covered: Historically, initial studies on the origin of hyalocytes used light and electron microscopy. Modern investigations across species including rodents and humans will be described. Novel imaging is now available to study human hyalocytes in vivo. The shared ontogeny with retinal microglia and their eventual interdependence as well as differences will be discussed. Expert opinion: Owing to a common origin as myeloid cells, hyalocytes and retinal microglia have similarities, but hyalocytes appear to be distinct as resident macrophages of the vitreous body.

15.
Case Rep Ophthalmol Med ; 2021: 6816195, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956683

RESUMEN

While plasmapheresis is well known to significantly improve both retinal findings and systemic manifestations associated with Waldenstrom macroglobulinemia, few reports exist documenting changes in optical coherence tomography angiography (OCT-A). The authors present a case of a patient with Waldenstrom macroglobulinemia who had resolution of white-centered peripheral retinal lesions and parafoveal outer nuclear layer hyperreflective material following plasmapheresis. Applying image analysis software to before and after OCT-A images, the authors were able to show an objective decrease in retinal capillary and large vessel density following plasmapheresis. This technique can be used to guide treatment and surveillance for patients with hyperviscosity-related retinopathy.

16.
Am J Ophthalmol Case Rep ; 23: 101146, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34195479

RESUMEN

PURPOSE: Lafora disease is a genetic neurodegenerative metabolic disorder caused by insoluble polyglucosan aggregate accumulation throughout the central nervous system and body. The retina is an accessible neural tissue, which may offer alternative methods to assess neurological diseases quickly and noninvasively. In this way, noninvasive imaging may provide a means to characterize neurodegenerative disease, which enables earlier identification and diagnosis of disease and the ability to monitor disease progression. In this study, we sought to characterize the retina of individuals with Lafora disease using non-invasive retinal imaging. METHODS: One eye of three individuals with genetically confirmed Lafora disease were imaged with optical coherence tomography (OCT) and adaptive optics scanning light ophthalmoscopy (AOSLO). When possible, OCT volume and line scans were acquired to assess total retinal thickness, ganglion cell-inner plexiform layer thickness, and outer nuclear layer + Henle fiber layer thickness. OCT angiography (OCTA) scans were acquired in one subject at the macula and optic nerve head (ONH). AOSLO was used to characterize the photoreceptor mosaic and examine the retinal nerve fiber layer (RNFL). RESULTS: Two subjects with previous seizure activity demonstrated reduced retinal thickness, while one subject with no apparent symptoms had normal retinal thickness. All other clinical measures, as well as parafoveal cone density, were within normal range. Nummular reflectivity at the level of the RNFL was observed using AOSLO in the macula and near the ONH in all three subjects. CONCLUSIONS: This multimodal retinal imaging approach allowed us to observe a number of retinal structural features in all three individuals. Most notably, AOSLO revealed nummular reflectivity within the inner retina of each subject. This phenotype has not been reported previously and may represent a characteristic change produced by the neurodegenerative process.

17.
Biomed Opt Express ; 12(5): 2825-2840, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34123506

RESUMEN

Pathophysiology of sickle cell disease (SCD) features intermittent vaso-occlusion of microcirculatory networks that facilitate ischemic damage. Past research has, however, relied on static images to characterize this active disease state. This study develops imaging metrics to more fully capture dynamic vascular changes, quantifying intermittent retinal capillary perfusion in unaffected controls and SCD patients using sequential optical coherence tomography angiography (OCT-A) scans. The results reveal significant dynamic variation of capillary perfusion in SCD patients compared to controls. This measurement of vaso-occlusive burden in patients would provide utility in monitoring of the disease state and in evaluating treatment efficacy.

18.
Am J Ophthalmol Case Rep ; 22: 101090, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33981912

RESUMEN

PURPOSE: Fundus albipunctatus is an inherited cause of congenital stationary night blindness. The objective of this report is to describe structural changes occurring in a macular phenotype of a novel RDH5 mutation producing fundus albipunctatus using high-resolution in vivo imaging. A 62-year-old male with longstanding night blindness underwent imaging and genetic evaluation. High-resolution images of the photoreceptor mosaic were compared to those of a healthy subject. Results of a comprehensive ophthalmic evaluation and genetic testing with imaging including fundus photography, spectral-domain optical coherence tomography (OCT), fluorescein angiography (FA), OCT angiography (OCT-A), and adaptive optics scanning light ophthalmoscopy (AOSLO) are described. OBSERVATIONS: The patient presented with visual acuity of 20/25 in both eyes and longstanding poor dark adaptation. Anterior segment examination was unremarkable. Fundoscopy revealed well circumscribed bilateral perifoveal mottling and atrophy in both eyes. Discrete white-yellow flecks were present beyond the vascular arcades extending to the far periphery. Genetic testing revealed a novel compound heterozygous RDH5 mutation (c.388C > T, p.Gln130*; c.665T > C, p.Leu222Pro). OCT demonstrated perifoveal photoreceptor and outer retinal irregularities, which corresponded to a window defect with late staining on FA. OCT-A demonstrated normal retinal vasculature with patchy areas of non-perfusion in the choriocapillaris. Macular abnormalities in both eyes were imaged using AOSLO to assess cone and rod photoreceptor architecture. While clinical features are consistent with a primary rod disorder, confocal AOSLO showed a paucity of normal cones with a small spared central island in both eyes. Rods appeared larger and more irregular throughout the macula. Non-confocal split detection AOSLO imaging revealed the presence of cone inner segments in dark regions of confocal imaging, indicating some degree of photoreceptor preservation. CONCLUSIONS AND IMPORTANCE: The AOSLO imaging of this particular macular phenotype of fundus albipunctatus demonstrates some of the structural photoreceptor abnormalities that occur in this condition, adding insight to the variable presentation of RDH5 retinopathy. The presence of preserved inner segment architecture suggests the possibility that gene therapy could play a future role in treating this condition.

19.
J Vasc Res ; 58(4): 207-230, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33839725

RESUMEN

The molecular signaling cascades that regulate angiogenesis and microvascular remodeling are fundamental to normal development, healthy physiology, and pathologies such as inflammation and cancer. Yet quantifying such complex, fractally branching vascular patterns remains difficult. We review application of NASA's globally available, freely downloadable VESsel GENeration (VESGEN) Analysis software to numerous examples of 2D vascular trees, networks, and tree-network composites. Upon input of a binary vascular image, automated output includes informative vascular maps and quantification of parameters such as tortuosity, fractal dimension, vessel diameter, area, length, number, and branch point. Previous research has demonstrated that cytokines and therapeutics such as vascular endothelial growth factor, basic fibroblast growth factor (fibroblast growth factor-2), transforming growth factor-beta-1, and steroid triamcinolone acetonide specify unique "fingerprint" or "biomarker" vascular patterns that integrate dominant signaling with physiological response. In vivo experimental examples described here include vascular response to keratinocyte growth factor, a novel vessel tortuosity factor; angiogenic inhibition in humanized tumor xenografts by the anti-angiogenesis drug leronlimab; intestinal vascular inflammation with probiotic protection by Saccharomyces boulardii, and a workflow programming of vascular architecture for 3D bioprinting of regenerative tissues from 2D images. Microvascular remodeling in the human retina is described for astronaut risks in microgravity, vessel tortuosity in diabetic retinopathy, and venous occlusive disease.


Asunto(s)
Proteínas Angiogénicas/metabolismo , Arterias/anatomía & histología , Arterias/metabolismo , Modelos Anatómicos , Modelos Cardiovasculares , Neovascularización Fisiológica , Transducción de Señal , Remodelación Vascular , Proteínas Angiogénicas/genética , Animales , Astronautas , Bioimpresión , Simulación por Computador , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Fractales , Regulación de la Expresión Génica , Humanos , Neovascularización Patológica , Neovascularización Fisiológica/genética , Impresión Tridimensional , Oclusión de la Vena Retiniana/metabolismo , Oclusión de la Vena Retiniana/patología , Vasos Retinianos/metabolismo , Vasos Retinianos/patología , Transducción de Señal/genética , Programas Informáticos , Remodelación Vascular/genética , Ingravidez
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA