Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 11(12)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38140230

RESUMEN

(1) Background: Understanding how advanced cancers evade host innate and adaptive immune opponents has led to cancer immunotherapy. Among several immunotherapeutic strategies, the reversal of immunosuppression mediated by regulatory T cells in the tumor microenvironment (TME) using blockers of immune-checkpoint signaling in effector T cells is the most successful treatment measure. Furthermore, agonists of T cell costimulatory molecules (CD40, 4-1BB, OX40) play an additional anti-cancer role to that of checkpoint blocking in combined therapy and serve also as adjuvant/neoadjuvant/induction therapy to conventional cancer treatments, such as tumor resection and radio- and chemo- therapies. (2) Methods and Results: In this study, novel agonistic antibodies to the OX40/CD134 ectodomain (EcOX40), i.e., fully human bivalent single-chain variable fragments (HuscFvs) linked to IgG Fc (bivalent HuscFv-Fcγ fusion antibodies) were generated by using phage-display technology and genetic engineering. The HuscFvs in the fusion antibodies bound to the cysteine-rich domain-2 of the EcOX40, which is known to be involved in OX40-OX40L signaling for NF-κB activation in T cells. The fusion antibodies caused proliferation, and increased the survival and cytokine production of CD3-CD28-activated human T cells. They showed enhancement trends for other effector T cell activities like granzyme B production and lysis of ovarian cancer cells when added to the activated T cells. (3) Conclusions: The novel OX40 agonistic fusion antibodies should be further tested step-by-step toward their safe use as an adjunctive non-immunogenic cancer immunotherapeutic agent.

2.
Microb Cell Fact ; 22(1): 260, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110987

RESUMEN

BACKGROUND: RNA-dependent RNA polymerase (RdRp) is a good target of anti-RNA virus agents; not only it is pivotal for the RNA virus replication cycle and highly conserved among RNA viruses across different families, but also lacks human homolog. Recently, human single-chain antibody (HuscFv) that bound to thumb domain of hepatitis C virus (HCV) RNA-dependent RNA polymerase (functionalized NS5B protein) was produced and engineered into cell-penetrating antibody (super antibody) in the form of cell-penetrating peptide (penetratin, PEN)-linked HuscFv (PEN-HuscFv34). The super antibody was produced and purified from inclusion body (IB) of a pen-huscfv34-vector-transformed Escherichia coli. The super antibody inhibited replication of alpha- and beta- coronaviruses, flaviviruses, and picornaviruses that were tested (broadly effective); thus, it has high potential for developing further towards a pan-anti-RNA virus agent. However, production, purification, and refolding of the super antibody molecules from the bacterial IB are laborious and hurdles to large-scale production. Therefore, in this study, Sortase-self-cleave method and bacteria surface display system were combined and modified for the super antibody production. METHODS AND RESULTS: BL21 (DE3) ΔA E. coli, a strain lacking predominant outer membrane protein (OmpA) and ion and OmpT proteases, that displayed a membrane-anchored fusion protein, i.e., chimeric lipoprotein (Lpp')-OmpA', SUMO, Sortase protease, Sortase cleavage site (LPET↓G) and PEN-HuscFv34-6× His was generated. The soluble PEN-HuscFv34-6× His with glycine at the N-terminus could be released from the E. coli surface, simply by incubating the bacterial cells in a Sortase-cleavage buffer. After centrifugation, the G-PEN-HuscFv34-6× His could be purified from the supernatant. The purified G-PEN-HuscFv34-6× retained original cell-penetrating ability (being super antibody) and the broadly effective anti-RNA virus activity of the original IB-derived-PEN-HuscFv34. CONCLUSION: The functionalized super antibody to RNA virus RdRp was successfully produced by using combined Sortase self-cleave and bacterial surface display systems with modification. The display system is suitable for downstream processing in a large-scale production of the super antibody. It is applicable also for production of other recombinant proteins in soluble free-folding form.


Asunto(s)
Escherichia coli , Anticuerpos de Cadena Única , Humanos , Escherichia coli/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Anticuerpos de Cadena Única/genética , Proteínas Recombinantes , Proteínas de la Membrana
4.
Int J Mol Sci ; 24(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37373012

RESUMEN

Enterovirus A71 (EV-A71) is one of the causative agents of hand-foot-mouth disease, which can be associated with neurocomplications of the central nervous system. A limited understanding of the virus's biology and pathogenesis has led to the unavailability of effective anti-viral treatments. The EV-A71 RNA genome carries type I internal ribosomal entry site (IRES) at 5' UTR that plays an essential role in the viral genomic translation. However, the detailed mechanism of IRES-mediated translation has not been elucidated. In this study, sequence analysis revealed that the domains IV, V, and VI of EV-A71 IRES contained the structurally conserved regions. The selected region was transcribed in vitro and labeled with biotin to use as an antigen for selecting the single-chain variable fragment (scFv) antibody from the naïve phage display library. The so-obtained scFv, namely, scFv #16-3, binds specifically to EV-A71 IRES. The molecular docking showed that the interaction between scFv #16-3 and EV-A71 IRES was mediated by the preferences of amino acid residues, including serine, tyrosine, glycine, lysine, and arginine on the antigen-binding sites contacted the nucleotides on the IRES domains IV and V. The so-produced scFv has the potential to develop as a structural biology tool to study the biology of the EV-A71 RNA genome.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Anticuerpos de Cadena Única , Humanos , Enterovirus/genética , Anticuerpos de Cadena Única/genética , Enterovirus Humano A/genética , Sitios Internos de Entrada al Ribosoma/genética , Simulación del Acoplamiento Molecular , Antígenos Virales/genética
5.
Viruses ; 15(6)2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37376552

RESUMEN

Engineered nanobodies (VHs) to the SARS-CoV-2 receptor-binding domain (RBD) were generated using phage display technology. A recombinant Wuhan RBD served as bait in phage panning to fish out nanobody-displaying phages from a VH/VHH phage display library. Sixteen phage-infected E. coli clones produced nanobodies with 81.79-98.96% framework similarity to human antibodies; thus, they may be regarded as human nanobodies. Nanobodies of E. coli clones 114 and 278 neutralized SARS-CoV-2 infectivity in a dose-dependent manner; nanobodies of clones 103 and 105 enhanced the virus's infectivity by increasing the cytopathic effect (CPE) in an infected Vero E6 monolayer. These four nanobodies also bound to recombinant Delta and Omicron RBDs and native SARS-CoV-2 spike proteins. The neutralizing VH114 epitope contains the previously reported VYAWN motif (Wuhan RBD residues 350-354). The linear epitope of neutralizing VH278 at Wuhan RBD 319RVQPTESIVRFPNITN334 is novel. In this study, for the first time, we report SARS-CoV-2 RBD-enhancing epitopes, i.e., a linear VH103 epitope at RBD residues 359NCVADVSVLYNSAPFFTFKCYG380, and the VH105 epitope, most likely conformational and formed by residues in three RBD regions that are spatially juxtaposed upon the protein folding. Data obtained in this way are useful for the rational design of subunit SARS-CoV-2 vaccines that should be devoid of enhancing epitopes. VH114 and VH278 should be tested further for clinical use against COVID-19.


Asunto(s)
COVID-19 , Anticuerpos de Dominio Único , Animales , Humanos , SARS-CoV-2 , Epítopos , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Escherichia coli/metabolismo , Anticuerpos Neutralizantes , Glicoproteína de la Espiga del Coronavirus
6.
Front Microbiol ; 13: 926929, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935185

RESUMEN

RNA-dependent RNA polymerase (RdRp) is a unique and highly conserved enzyme across all members of the RNA virus superfamilies. Besides, humans do not have a homolog of this protein. Therefore, the RdRp is an attractive target for a broadly effective therapeutic agent against RNA viruses. In this study, a formerly generated cell-penetrating human single-chain antibody variable fragment (superantibody) to a conformational epitope of hepatitis C virus (HCV) RdRp, which inhibited the polymerase activity leading to the HCV replication inhibition and the host innate immunity restoration, was tested against emerging/reemerging RNA viruses. The superantibody could inhibit the replication of the other members of the Flaviviridae (DENV serotypes 1-4, ZIKV, and JEV), Picornaviridae (genus Enterovirus: EV71, CVA16), and Coronaviridae (genus Alphacoronavirus: PEDV, and genus Betacoronavirus: SARS-CoV-2 (Wuhan wild-type and the variants of concern), in a dose-dependent manner, as demonstrated by the reduction of intracellular viral RNAs and numbers of the released infectious particles. Computerized simulation indicated that the superantibody formed contact interfaces with many residues at the back of the thumb domain (thumb II site, T2) of DENV, ZIKV, JEV, EV71, and CVA16 and fingers and thumb domains of the HCV and coronaviruses (PEDV and SARS-CoV-2). The superantibody binding may cause allosteric change in the spatial conformation of the enzyme and disrupt the catalytic activity, leading to replication inhibition. Although the speculated molecular mechanism of the superantibody needs experimental support, existing data indicate that the superantibody has high potential as a non-chemical broadly effective anti-positive sense-RNA virus agent.

7.
Front Microbiol ; 13: 933249, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935230

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is the causative agent of a highly contagious enteric disease of pigs characterized by diarrhea, vomiting, and severe dehydration. PEDV infects pigs of all ages, but neonatal pigs during the first week of life are highly susceptible; the mortality rates among newborn piglets may reach 80-100%. Thus, PEDV is regarded as one of the most devastating pig viruses that cause huge economic damage to pig industries worldwide. Vaccination of sows and gilts at the pre-fertilization or pre-farrowing stage is a good strategy for the protection of suckling piglets against PEDV through the acquisition of the lactating immunity. However, vaccination of the mother pigs for inducing a high level of virus-neutralizing antibodies is complicated with unstandardized immunization protocol and unreliable outcomes. Besides, the vaccine may also induce enhancing antibodies that promote virus entry and replication, so-called antibody-dependent enhancement (ADE), which aggravates the disease upon new virus exposure. Recognition of the virus epitope that induces the production of the enhancing antibodies is an existential necessity for safe and effective PEDV vaccine design. In this study, the enhancing epitope of the PEDV spike (S) protein was revealed for the first time, by using phage display technology and mouse monoclonal antibody (mAbG3) that bound to the PEDV S1 subunit of the S protein and enhanced PEDV entry into permissive Vero cells that lack Fc receptor. The phages displaying mAbG3-bound peptides derived from the phage library by panning with the mAbG3 matched with several regions in the S1-0 sub-domain of the PEDV S1 subunit, indicating that the epitope is discontinuous (conformational). The mAbG3-bound phage sequence also matched with a linear sequence of the S1-BCD sub-domains. Immunological assays verified the phage mimotope results. Although the molecular mechanism of ADE caused by the mAbG3 via binding to the newly identified S1 enhancing epitope awaits investigation, the data obtained from this study are helpful and useful in designing a safe and effective PEDV protein subunit/DNA vaccine devoid of the enhancing epitope.

8.
Int J Mol Sci ; 23(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35743031

RESUMEN

Broadly effective and safe anti-coronavirus agent is existentially needed. Major protease (3CLpro) is a highly conserved enzyme of betacoronaviruses. The enzyme plays pivotal role in the virus replication cycle. Thus, it is a good target of a broadly effective anti-Betacoronavirus agent. In this study, human single-chain antibodies (HuscFvs) of the SARS-CoV-2 3CLpro were generated using phage display technology. The 3CLpro-bound phages were used to infect Escherichia coli host for the production the 3CLpro-bound HuscFvs. Computerized simulation was used to guide the selection of the phage infected-E. coli clones that produced HuscFvs with the 3CLpro inhibitory potential. HuscFvs of three phage infected-E. coli clones were predicted to form contact interface with residues for 3CLpro catalytic activity, substrate binding, and homodimerization. These HuscFvs were linked to a cell-penetrating peptide to make them cell-penetrable, i.e., became superantibodies. The superantibodies blocked the 3CLpro activity in vitro, were not toxic to human cells, traversed across membrane of 3CLpro-expressing cells to co-localize with the intracellular 3CLpro and most of all, they inhibited replication of authentic SARS-CoV-2 Wuhan wild type and α, ß, δ, and Omicron variants that were tested. The superantibodies should be investigated further towards clinical application as a safe and broadly effective anti-Betacoronavirus agent.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Proteasas 3C de Coronavirus , Escherichia coli , Humanos , Inhibidores de Proteasas/farmacología
9.
Front Cell Infect Microbiol ; 12: 882608, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35558100

RESUMEN

Trichinella spiralis, a tissue-dwelling helminth, causes human trichinellosis through ingestion of undercooked meat containing the parasite's infective larvae. However, benefits from T. spiralis infection have been documented: reduction of allergic diseases, inhibition of collagen-induced arthritis, delay of type 1 diabetes progression, and suppression of cancer cell proliferation. Since conventional cancer treatments have limited and unreliable efficacies with adverse side effects, novel adjunctive therapeutic agents and strategies are needed to enhance the overall treatment outcomes. This study aimed to validate the antitumor activity of T. spiralis infective larval extract (LE) and extricate the parasite-derived antitumor peptide. Extracts of T. spiralis infective larvae harvested from striated muscles of infected mice were prepared and tested for antitumor activity against three types of carcinoma cells: hepatocellular carcinoma HepG2, ovarian cancer SK-OV-3, and lung adenocarcinoma A549. The results showed that LE exerted the greatest antitumor effect on HepG2 cells. Proteomic analysis of the LE revealed 270 proteins. They were classified as cellular components, proteins involved in metabolic processes, and proteins with diverse biological functions. STRING analysis showed that most LE proteins were interconnected and played pivotal roles in various metabolic processes. In silico analysis of anticancer peptides identified three candidates. Antitumor peptide 2 matched the hypothetical protein T01_4238 of T. spiralis and showed a dose-dependent anti-HepG2 effect, not by causing apoptosis or necrosis but by inducing ROS accumulation, leading to inhibition of cell proliferation. The data indicate the potential application of LE-derived antitumor peptide as a complementary agent for human hepatoma treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Trichinella spiralis , Triquinelosis , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Proteínas del Helminto/metabolismo , Humanos , Larva , Neoplasias Hepáticas/tratamiento farmacológico , Ratones , Péptidos/metabolismo , Péptidos/farmacología , Extractos Vegetales , Proteómica
10.
Viruses ; 14(1)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35062329

RESUMEN

Porcine epidemic diarrhea virus (PEDV) causes devastating enteric disease that inflicts huge economic damage on the swine industry worldwide. A safe and highly effective PEDV vaccine that contains only the virus-neutralizing epitopes (not enhancing epitope), as well as a ready-to-use PEDV neutralizing antibody for the passive immunization of PEDV vulnerable piglets (during the first week of life) are needed, particularly for PEDV-endemic farms. In this study, we generated monoclonal antibodies (mAbs) to the recombinant S1 domain of PEDV spike (S) protein and tested their PEDV neutralizing activity by CPE-reduction assay. The mAb secreted by one hybrodoma clone (A3), that also bound to the native S1 counterpart from PEDV-infected cells (tested by combined co-immunoprecipitation and Western blotting), neutralized PEDV infectivity. Epitope of the neutralizing mAb (mAbA3) locates in the S1A subdomain of the spike protein, as identified by phage mimotope search and multiple sequence alignment, and peptide binding-ELISA. The newly identified epitope is shared by PEDV G1 and G2 strains and other alphacoronaviruses. In summary, mAbA3 may be useful as a ready-to-use antibody for passive immunization of PEDV-susceptible piglets, while the novel neutralizing epitope, together with other, previously known protective epitopes, have potential as an immunogenic cocktail for a safe, next-generation PEDV vaccine.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Epítopos/inmunología , Inmunoglobulina M/inmunología , Virus de la Diarrea Epidémica Porcina/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Chlorocebus aethiops , Ensayo de Inmunoadsorción Enzimática , Femenino , Células HeLa , Humanos , Inmunización Pasiva , Ratones , Ratones Endogámicos BALB C , Pruebas de Neutralización , Alineación de Secuencia , Glicoproteína de la Espiga del Coronavirus/genética , Porcinos , Enfermedades de los Porcinos/inmunología , Células Vero
11.
Front Microbiol ; 12: 729193, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745031

RESUMEN

Pneumocystis pneumonia (PCP) is an opportunistic infection that commonly occurs in immunocompromised individuals. A definite diagnosis of PCP can be made only when the organism is identified in a respiratory specimen. It remains unclear whether qPCR can differentiate patients with PCP from those with Pneumocystis jirovecii colonization. In this study, we retrospectively collected data from HIV and non-HIV patients during 2013-2019. A diagnosis of definite, probable PCP, or PCP excluded was made based on clinical criteria, radiological reports, and three standard laboratory staining methods with blinding to qPCR data. Data from qPCR that was performed to determine the fungal burden (DNA copies/µl) in the BAL specimens of 69 HIV and 286 non-HIV patients were then obtained and reviewed. Receiver Operating Characteristic (ROC) curve analysis was performed to determine the upper and lower cut-off values for PCP diagnosis in HIV and non-HIV groups. In the non-HIV group, the lower cut-off value of 1,480 DNA copies/µl yielded a sensitivity of 100% (95% confidence interval [CI], 91.0-100), specificity of 72.9% (95% CI, 64.0-80.7), a positive predictive value (PPV) of 54.9% (95% CI, 47.6-62.1), and a negative predictive value (NPV) of 100% with Youden index of 0.73 for PCP diagnosis. In this group, the upper cut-off value of 9,655 DNA copies/µl showed the sensitivity of 100% (95% CI, 91.0-100) and specificity of 95.8% (95% CI, 90.4-98.6) with PPV of 88.6% (95% CI, 76.8-94.8) and a NPV of 100% with Youden index of 0.96 for PCP diagnosis. Regarding the HIV group, the lower cut-off value of 1,480 DNA copies/µl showed the sensitivity of 100% (95% CI, 92.5-100%) and specificity of 91.7% (95% CI, 61.5-99.8) with PPV of 97.9% (95% CI, 87.8-99.7) and a NPV of 100% with Youden index of 0.92 for PCP diagnosis. The sensitivity and specificity of the upper cut-off value of 12,718 DNA copies/µl in this group were 97.9% (95%CI, 88.7-100) and 100% (95%CI, 73.5-100), respectively. The values above the upper cut-off point had a PPV of 100% (95% CI, N/A) and a NPV of 92.3% (95% CI, 63.3-98.8) with Youden index of 0.98 for PCP diagnosis in the HIV group.

12.
Molecules ; 26(21)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34770845

RESUMEN

Proviral integration site of Moloney virus-2 (PIM2) is overexpressed in multiple human cancer cells and high level is related to poor prognosis; thus, PIM2 kinase is a rational target of anti-cancer therapeutics. Several chemical inhibitors targeting PIMs/PIM2 or their downstream signaling molecules have been developed for treatment of different cancers. However, their off-target toxicity is common in clinical trials, so they could not be advanced to official approval for clinical application. Here, we produced human single-chain antibody fragments (HuscFvs) to PIM2 by using phage display library, which was constructed in a way that a portion of phages in the library carried HuscFvs against human own proteins on their surface with the respective antibody genes in the phage genome. Bacterial derived-recombinant PIM2 (rPIM2) was used as an antigenic bait to fish out the rPIM2-bound phages from the library. Three E. coli clones transfected with the HuscFv genes derived from the rPIM2-bound phages expressed HuscFvs that bound also to native PIM2 from cancer cells. The HuscFvs presumptively interact with the PIM2 at the ATP binding pocket and kinase active loop. They were as effective as small chemical drug inhibitor (AZD1208, which is an ATP competitive inhibitor of all PIM isoforms for ex vivo use) in inhibiting PIM kinase activity. The HuscFvs should be engineered into a cell-penetrating format and tested further towards clinical application as a novel and safe pan-anti-cancer therapeutics.


Asunto(s)
Ingeniería Genética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Recombinantes , Anticuerpos de Cadena Única/farmacología , Afinidad de Anticuerpos , Antineoplásicos Inmunológicos/química , Antineoplásicos Inmunológicos/farmacología , Técnicas de Visualización de Superficie Celular , Cromatografía en Gel , Activación Enzimática/efectos de los fármacos , Modelos Moleculares , Biblioteca de Péptidos , Unión Proteica , Conformación Proteica , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética , Relación Estructura-Actividad
13.
Front Cell Infect Microbiol ; 11: 702125, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395313

RESUMEN

For the establishment of a successful infection, i.e., long-term parasitism and a complete life cycle, parasites use various diverse mechanisms and factors, which they may be inherently bestowed with, or may acquire from the natural vector biting the host at the infection prelude, or may take over from the infecting host, to outmaneuver, evade, overcome, and/or suppress the host immunity, both innately and adaptively. This narrative review summarizes the up-to-date strategies exploited by a number of representative human parasites (protozoa and helminths) to counteract the target host immune defense. The revisited information should be useful for designing diagnostics and therapeutics as well as vaccines against the respective parasitic infections.


Asunto(s)
Helmintos , Parásitos , Enfermedades Parasitarias , Animales , Interacciones Huésped-Parásitos , Humanos , Evasión Inmune
14.
Am J Cancer Res ; 10(2): 674-687, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32195035

RESUMEN

Since the prognosis for children with high-risk osteosarcoma (OS) remains suboptimal despite intensive multi-modality therapies, there is a clear and urgent need for the development of targeted therapeutics against these refractory malignancies. Chimeric antigen receptor (CAR) modified T cells can meet this need by utilizing the immune system's potent cytotoxic mechanisms against tumor specific antigen targets with exquisite specificity. Since OS highly expresses the GD2 antigen, a viable immunotherapeutic target, we sought to assess if CAR modified T cells targeting GD2 could induce cytotoxicity against OS tumor cells. We demonstrated that the GD2 CAR modified T cells were highly efficacious for inducing OS tumor cell death. Interestingly, the OS cells were induced to up-regulate expression of PD-L1 upon interaction with GD2 CAR modified T cells, and the specific interaction induced CAR T cells to overexpress the exhaustion marker PD-1 along with increased CAR T cell apoptosis. To further potentiate CAR T cell killing activity against OS, we demonstrated that suboptimal chemotherapeutic treatment with doxorubicin can synergize with CAR T cells to effectively kill OS tumor cells.

15.
Sci Rep ; 8(1): 6787, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29693654

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

16.
Sci Rep ; 7(1): 15042, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29118372

RESUMEN

A safe and broadly effective direct acting anti-hepatitis C virus (HCV) agent that can withstand the viral mutation is needed. In this study, human single chain antibody variable fragments (HuscFvs) to conserved non-structural protein-5A (NS5A) of HCV were produced by phage display technology. Recombinant NS5A was used as bait for fishing-out the protein bound-phages from the HuscFv-phage display library. NS5A-bound HuscFvs produced by five phage transfected-E. coli clones were linked molecularly to nonaarginine (R9) for making them cell penetrable (become transbodies). The human monoclonal transbodies inhibited HCV replication in the HCVcc infected human hepatic cells and also rescued the cellular antiviral immune response from the viral suppression. Computerized simulation verified by immunoassays indicated that the transbodies used several residues in their multiple complementarity determining regions (CDRs) to form contact interface with many residues of the NS5A domain-I which is important for HCV replication complex formation and RNA binding as well as for interacting with several host proteins for viral immune evasion and regulation of cellular physiology. The human monoclonal transbodies have high potential for testing further as a new ramification of direct acting anti-HCV agent, either alone or in combination with their cognates that target other HCV proteins.


Asunto(s)
Hepacivirus/metabolismo , Anticuerpos de Cadena Única/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Sitios de Unión , Técnicas de Visualización de Superficie Celular , Hepacivirus/efectos de los fármacos , Hepacivirus/genética , Hepatitis C/metabolismo , Hepatitis C/prevención & control , Hepatitis C/virología , Humanos , Biblioteca de Péptidos , Unión Proteica , Anticuerpos de Cadena Única/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/genética
17.
Virology ; 507: 20-31, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28395182

RESUMEN

The HCV NS5A protein is essential for viral RNA replication and virus particle assembly. To study the viral replication cycle and NS5A biology we generated an infectious HCV construct with a NanoLuciferase (NLuc) insertion within NS5A. Surprisingly, beyond its utility as a sensitive reporter of cytoplasmic viral RNA replication, we also observed strong luminescence in cell culture fluids. Further analysis using assembly-defective viruses and subgenomic replicons revealed that infectious virus production was not required for extracellular NS5A-NLuc activity but was associated with enrichment of extracellular NS5A-NLuc in intermediate-density fractions similar to those of exosomes and virus particles. Additionally, BRET analysis indicated that intracellular and extracellular forms of NS5A may adopt differing conformations. Importantly, infection studies using a human liver chimeric mouse model confirmed robust infection in vivo and ready detection of NLuc activity in serum. We hypothesise that the presence of NS5A in extracellular fluids contributes to HCV pathogenesis.


Asunto(s)
Líquido Extracelular/virología , Hepacivirus/metabolismo , Hepatitis C/virología , Luciferasas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Genes Reporteros , Hepacivirus/genética , Humanos , Luciferasas/genética , Ratones , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas no Estructurales Virales/genética
18.
Biochem Biophys Res Commun ; 479(2): 245-252, 2016 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-27638305

RESUMEN

A direct acting anti-Ebola agent is needed. VP40, a conserved protein across Ebolavirus (EBOV) species has several pivotal roles in the virus life cycle. Inhibition of VP40 functions would lessen the virion integrity and interfere with the viral assembly, budding, and spread. In this study, cell penetrable human scFvs (HuscFvs) that bound to EBOV VP40 were produced by phage display technology. Gene sequences coding for VP40-bound-HuscFvs were subcloned from phagemids into protein expression plasmids downstream to a gene of cell penetrating peptide, i.e., nonaarginine (R9). By electron microscopy, transbodies from three clones effectively inhibited egress of the Ebola virus-like particles from human hepatic cells transduced with pseudo-typed-Lentivirus particles carrying EBOV VP40 and GP genes. Computerized simulation indicated that the effective HuscFvs bound to multiple basic residues in the cationic patch of VP40 C-terminal domain which are important in membrane-binding for viral matrix assembly and virus budding. The transbodies bound also to VP40 N-terminal domain and L domain peptide encompassed the PTAPPEY (WW binding) motif, suggesting that they might confer VP40 function inhibition through additional mechanism(s). The generated transbodies are worthwhile tested with authentic EBOV before developing to direct acting anti-Ebola agent for preclinical and clinical trials.


Asunto(s)
Ebolavirus/efectos de los fármacos , Anticuerpos de Cadena Única/farmacología , Proteínas de la Matriz Viral/inmunología , Liberación del Virus/efectos de los fármacos , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/ultraestructura , Carcinoma Hepatocelular/virología , Línea Celular Tumoral , Ebolavirus/fisiología , Ebolavirus/ultraestructura , Interacciones Huésped-Patógeno , Humanos , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/ultraestructura , Neoplasias Hepáticas/virología , Microscopía Electrónica de Rastreo , Modelos Moleculares , Biblioteca de Péptidos , Unión Proteica , Dominios Proteicos , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/inmunología , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética , Virión/efectos de los fármacos , Virión/fisiología , Virión/ultraestructura , Liberación del Virus/fisiología
19.
Biochem Biophys Res Commun ; 476(4): 654-664, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27240954

RESUMEN

NS4B of hepatitis C virus (HCV) initiates membrane web formation, binds RNA and other HCV proteins for viral replication complex (RC) formation, hydrolyses NTP, and inhibits innate anti-viral immunity. Thus, NS4B is an attractive target of a novel anti-HCV agent. In this study, humanized-nanobodies (VHs/VHHs) that bound to recombinant NS4B were produced by means of phage display technology. The nanobodies were linked molecularly to a cell penetrating peptide, penetratin (PEN), for making them cell penetrable (become transbodies). Human hepatic (Huh7) cells transfected with HCV JFH1-RNA that were treated with transbodies from four Escherichia coli clones (PEN-VHH7, PEN-VHH9, PEN-VH33, and PEN-VH43) had significant reduction of HCV RNA amounts in their culture fluids and intracellularly when compared to the transfected cells treated with control transbody and medium alone. The results were supported by the HCV foci assay. The transbody treated-transfected cells also had upregulation of the studied innate cytokine genes, IRF3, IFNß and IL-28b. The transbodies have high potential for testing further as a novel anti-HCV agent, either alone, adjunct of existing anti-HCV agents/remedies, or in combination with their cognates specific to other HCV enzymes/proteins.


Asunto(s)
Anticuerpos Antivirales/administración & dosificación , Hepacivirus/inmunología , Hepacivirus/fisiología , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/fisiología , Replicación Viral/inmunología , Replicación Viral/fisiología , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/química , Anticuerpos Monoclonales Humanizados/genética , Anticuerpos Antivirales/química , Anticuerpos Antivirales/genética , Antivirales/administración & dosificación , Antivirales/química , Proteínas Portadoras/administración & dosificación , Proteínas Portadoras/química , Proteínas Portadoras/genética , Línea Celular , Técnicas de Visualización de Superficie Celular , Péptidos de Penetración Celular/administración & dosificación , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/genética , Simulación por Computador , Hepacivirus/genética , Humanos , Inmunidad Innata/genética , Modelos Moleculares , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Anticuerpos de Dominio Único/administración & dosificación , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/genética , Transfección , Proteínas no Estructurales Virales/genética , Replicación Viral/genética
20.
Viruses ; 7(4): 2030-56, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25903832

RESUMEN

There is a need for safe and broadly effective anti-HCV agents that can cope with genetic multiplicity and mutations of the virus. In this study, humanized-camel VHHs to genotype 3a HCV serine protease were produced and were linked molecularly to a cell penetrating peptide, penetratin (PEN). Human hepatic (Huh7) cells transfected with the JFH-1 RNA of HCV genotype 2a and treated with the cell penetrable nanobodies (transbodies) had a marked reduction of the HCV RNA intracellularly and in their culture fluids, less HCV foci inside the cells and less amounts of HCV core antigen in culture supernatants compared with the infected cells cultured in the medium alone. The PEN-VHH-treated-transfected cells also had up-regulation of the genes coding for the host innate immune response (TRIF, TRAF3, IRF3, IL-28B and IFN-ß), indicating that the cell penetrable nanobodies rescued the host innate immune response from the HCV mediated-suppression. Computerized intermolecular docking revealed that the VHHs bound to residues of the protease catalytic triad, oxyanion loop and/or the NS3 N-terminal portion important for non-covalent binding of the NS4A protease cofactor protein. The so-produced transbodies have high potential for testing further as a candidate for safe, broadly effective and virus mutation tolerable anti-HCV agents.


Asunto(s)
Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Hepacivirus/fisiología , Anticuerpos contra la Hepatitis C/farmacología , Anticuerpos de Dominio Único/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Animales , Camelus , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Péptidos de Penetración Celular , Citocinas/biosíntesis , Portadores de Fármacos/metabolismo , Perfilación de la Expresión Génica , Hepacivirus/inmunología , Anticuerpos contra la Hepatitis C/genética , Hepatocitos/virología , Humanos , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Unión Proteica , ARN Viral/análisis , Análisis de Secuencia de ADN , Anticuerpos de Dominio Único/genética , Transfección , Proteínas del Núcleo Viral/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...