Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Phytopathology ; 112(4): 741-751, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34491796

RESUMEN

Fusarium graminearum is ranked among the five most destructive fungal pathogens that affect agroecosystems. It causes floral diseases in small grain cereals including wheat, barley, and oats, as well as maize and rice. We conducted a systematic review of peer-reviewed studies reporting species within the F. graminearum species complex (FGSC) and created two main data tables. The first contained summarized data from the articles including bibliographic, geographic, methodological (ID methods), host of origin and species, while the second data table contains information about the described strains such as publication, isolate code(s), host/substrate, year of isolation, geographical coordinates, species and trichothecene genotype. Analyses of the bibliographic data obtained from 123 publications from 2000 to 2021 by 498 unique authors and published in 40 journals are summarized. We describe the frequency of species and chemotypes for 16,274 strains for which geographical information was available, either provided as raw data or extracted from the publications, and sampled across six continents and 32 countries. The database and interactive interface are publicly available, allowing for searches, summarization, and mapping of strains according to several criteria including article, country, host, species and trichothecene genotype. The database will be updated as new articles are published and should be useful for guiding future surveys and exploring factors associated with species distribution such as climate and land use. Authors are encouraged to submit data at the strain level to the database, which is accessible at https://fgsc.netlify.app.


Asunto(s)
Fusarium , Tricotecenos , Grano Comestible/microbiología , Fusarium/genética , Enfermedades de las Plantas/microbiología
3.
Mycologia ; 114(1): 46-62, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34871141

RESUMEN

The Chaco wetland is among the most biologically diverse regions in Argentina. In collections of fungi from asymptomatic native grasses (Poaceae) from the wetlands, we identified isolates of Fusarium that were morphologically similar to F. armeniacum, but distinct from it by their production of abundant microconidia. All the isolates had identical, or nearly identical, partial sequences of TEF1 and RPB2. But they were distinct from reference sequences from F. armeniacum and Fusarium species closely related to it. Phylogenetic analysis of 34 full-length housekeeping gene sequences retrieved from whole genome sequences of three Chaco wetland isolates, 29 genes resolved the isolates as an exclusive clade within the F. sambucinum species complex. Based on results of the morphological and phylogenetic analysis, we concluded that the Chaco wetland isolates are a distinct and novel species, herein described as Fusarium chaquense, sp. nov., which is closely related to F. armeniacum. F. chaquense in culture can produce the trichothecenes T-2 and HT-2 toxin, neosolaniol, diacetoxyscirpenol, and monoacetoxyscirpenol, as well as beauvericin and the pigment aurofusarin. Genome sequence analysis also revealed the presence of three previously described loci required for trichothecene biosynthesis. This research represents the first study of Fusarium in a natural ecosystem in Argentina.


Asunto(s)
Fusarium , Tricotecenos , Argentina , Ecosistema , Filogenia , Poaceae , Humedales
4.
Toxins (Basel) ; 13(10)2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34679018

RESUMEN

Mycotoxins in small grains are a significant and long-standing problem. These contaminants may be produced by members of several fungal genera, including Alternaria, Aspergillus, Fusarium, Claviceps, and Penicillium. Interventions that limit contamination can be made both pre-harvest and post-harvest. Many problems and strategies to control them and the toxins they produce are similar regardless of the location at which they are employed, while others are more common in some areas than in others. Increased knowledge of host-plant resistance, better agronomic methods, improved fungicide management, and better storage strategies all have application on a global basis. We summarize the major pre- and post-harvest control strategies currently in use. In the area of pre-harvest, these include resistant host lines, fungicides and their application guided by epidemiological models, and multiple cultural practices. In the area of post-harvest, drying, storage, cleaning and sorting, and some end-product processes were the most important at the global level. We also employed the Nominal Group discussion technique to identify and prioritize potential steps forward and to reduce problems associated with human and animal consumption of these grains. Identifying existing and potentially novel mechanisms to effectively manage mycotoxin problems in these grains is essential to ensure the safety of humans and domesticated animals that consume these grains.


Asunto(s)
Grano Comestible/microbiología , Contaminación de Alimentos/prevención & control , Micotoxinas , Triticum/microbiología , Producción de Cultivos/métodos , Manipulación de Alimentos/métodos , Almacenamiento de Alimentos/métodos , Fungicidas Industriales , Enfermedades de las Plantas/microbiología
5.
Phytopathology ; 111(1): 170-183, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33079019

RESUMEN

Fusarium subglutinans and F. temperatum are two important fungal pathogens of maize whose distinctness as separate species has been difficult to assess. We isolated strains of these species from commercial and native maize varieties in Argentina and sequenced >28,000 loci to estimate genetic variation in the sample. Our objectives were to measure genetic divergence between the species, infer demographic parameters related to their split, and describe the population structure of the sample. When analyzed together, over 30% of each species' polymorphic sites (>2,500 sites) segregate as polymorphisms in the other. Demographic modeling confirmed the species split predated maize domestication, but subsequent between-species gene flow has occurred, with gene flow from F. subglutinans into F. temperatum greater than gene flow in the reverse direction. In F. subglutinans, little evidence exists for substructure or recent selective sweeps, but there is evidence for limited sexual reproduction. In F. temperatum, there is clear evidence for population substructure and signals of abundant recent selective sweeps, with sexual reproduction probably less common than in F. subglutinans. Both genetic variation and the relative number of polymorphisms shared between species increase near the telomeres of all 12 chromosomes, where genes related to plant-pathogen interactions often are located. Our results suggest that species boundaries between closely related Fusarium species can be semipermeable and merit further study. Such semipermeability could facilitate unanticipated genetic exchange between species and enable quicker permanent responses to changes in the agro-ecosystem, e.g., pathogen-resistant host varieties, new chemical and biological control agents, and agronomic practices.


Asunto(s)
Fusarium , Argentina , Ecosistema , Fusarium/genética , Flujo Génico , Enfermedades de las Plantas , Zea mays
6.
Appl Environ Microbiol ; 86(13)2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32358011

RESUMEN

Fusarium subglutinans and Fusarium temperatum are common maize pathogens that produce mycotoxins and cause plant disease. The ability of these species to produce beauvericin and fumonisin mycotoxins is not settled, as reports of toxin production are not concordant. Our objective was to clarify this situation by determining both the chemotypes and genotypes for strains from both species. We analyzed 25 strains from Argentina, 13 F. subglutinans and 12 F. temperatum strains, for toxin production by ultraperformance liquid chromatography mass spectrometry (UPLC-MS). We used new genome sequences from two strains of F. subglutinans and one strain of F. temperatum, plus genomes of other Fusarium species, to determine the presence of functional gene clusters for the synthesis of these toxins. None of the strains examined from either species produced fumonisins. These strains also lack Fum biosynthetic genes but retain homologs of some genes that flank the Fum cluster in Fusarium verticillioides None of the F. subglutinans strains we examined produced beauvericin although 9 of 12 F. temperatum strains did. A complete beauvericin (Bea) gene cluster was present in all three new genome sequences. The Bea1 gene was presumably functional in F. temperatum but was not functional in F. subglutinans due to a large insertion and multiple mutations that resulted in premature stop codons. The accumulation of only a few mutations expected to disrupt Bea1 suggests that the process of its inactivation is relatively recent. Thus, none of the strains of F. subglutinans or F. temperatum we examined produce fumonisins, and the strains of F. subglutinans examined also cannot produce beauvericin. Variation in the ability of strains of F. temperatum to produce beauvericin requires further study and could reflect the recent shared ancestry of these two species.IMPORTANCEFusarium subglutinans and F. temperatum are sister species and maize pathogens commonly isolated worldwide that can produce several mycotoxins and cause seedling disease, stalk rot, and ear rot. The ability of these species to produce beauvericin and fumonisin mycotoxins is not settled, as reports of toxin production are not concordant at the species level. Our results are consistent with previous reports that strains of F. subglutinans produce neither fumonisins nor beauvericin. The status of toxin production by F. temperatum needs further work. Our strains of F. temperatum did not produce fumonisins, while some strains produced beauvericin and others did not. These results enable more accurate risk assessments of potential mycotoxin contamination if strains of these species are present. The nature of the genetic inactivation of BEA1 is consistent with its relatively recent occurrence and the close phylogenetic relationship of the two sister species.


Asunto(s)
Depsipéptidos/análisis , Fumonisinas/análisis , Fusarium/química , Fusarium/genética , Genotipo , Análisis de Secuencia de ADN , Especificidad de la Especie
7.
Pathogens ; 8(1)2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30841490

RESUMEN

The objectives of the present study were to determine the combined effects of chitosan and water activity (aW) on growth and mycotoxin production in situ on the two most important Fusarium species (F. proliferatum and F. verticillioides) present on maize, and on F. graminearum, the main pathogen causing Fusarium head blight on wheat. Results showed that low-molecular-weight chitosan with more than 70% deacetylation at the lowest dose used (0.5 mg/g) was able to reduce deoxynivalenol (DON) and fumonisin (FBs) production on irradiated maize and wheat grains. Growth rates of F. graminearum also decreased at the lowest chitosan dose used (0.5 mg/g), while F. verticillioides and F. proliferatum growth rates were reduced at 0.98 aW at the highest chitosan dose used (2 mg/g). Since mycotoxins are unavoidable contaminants in food and feed chains, their presence needs to be reduced in order to minimize their effects on human and animal health and to diminish the annual market loss through rejected maize and wheat; in this scenario, pre- and post-harvest use of chitosan could be an important alternative.

8.
J Sci Food Agric ; 99(1): 47-54, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29797405

RESUMEN

BACKGROUND: A survey on Fusarium species and moniliformin (MON) occurrence in sorghum grains collected from one of the main sorghum-producing areas of Argentina was conducted. Also, growth of F. thapsinum, one of the main sorghum pathogens, and MON production under different water activity (aw ) conditions on a sorghum-based medium were determined. RESULTS: Infection of sorghum grains by Fusarium species ranged from 82.5 to 99%; closely related species F. verticillioides, F. thapsinum and F. andiyazi were the most frequently recovered, followed by F. proliferatum and F. subglutinans. By sequencing a portion of the translation elongation factor-1α (TEF-1α) gene and by maximum parsimony analysis, F. verticillioides and closely related species were identified as F. thapsinum, F. andiyazi and F. verticillioides. Species within the F. graminearum species complex (FGSC) were isolated in high frequency. Maximum growth rates of 12 F. thapsinum strains were obtained at 0.995 aw . All evaluated strains were able to produce MON at all aw values tested, but MON production was higher at 0.995-0.982 aw . MON was detected in 41% of the samples at levels ranging from 363.2 to 914.2 µg kg-1 . CONCLUSION: This study provides new data on the occurrence of Fusarium species in sorghum grains destined for animal consumption in Argentina. The production of MON at different aw values showed that the toxin can be produced under field conditions. The risk to livestock exposed to daily low levels of MON associated with the toxin occurrence in the sorghum grains analyzed is unknown. © 2018 Society of Chemical Industry.


Asunto(s)
Alimentación Animal/análisis , Ciclobutanos/análisis , Fusarium/aislamiento & purificación , Micotoxinas/análisis , Sorghum/microbiología , Argentina , Ciclobutanos/metabolismo , Contaminación de Alimentos/análisis , Fusarium/clasificación , Fusarium/genética , Fusarium/crecimiento & desarrollo , Micotoxinas/metabolismo , Filogenia , Enfermedades de las Plantas/microbiología , Semillas/química , Semillas/microbiología , Sorghum/química
9.
Toxins (Basel) ; 10(3)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29494529

RESUMEN

MycoKey, an EU-funded Horizon 2020 project, includes a series of "Roundtable Discussions" to gather information on trending research areas in the field of mycotoxicology. This paper includes summaries of the Roundtable Discussions on Chemical Detection and Monitoring of mycotoxins and on the role of genetics and biodiversity in mycotoxin production. Discussions were managed by using the nominal group discussion technique, which generates numerous ideas and provides a ranking for those identified as the most important. Four questions were posed for each research area, as well as two questions that were common to both discussions. Test kits, usually antibody based, were one major focus of the discussions at the Chemical Detection and Monitoring roundtable because of their many favorable features, e.g., cost, speed and ease of use. The second area of focus for this roundtable was multi-mycotoxin detection protocols and the challenges still to be met to enable these protocols to become methods of choice for regulated mycotoxins. For the genetic and biodiversity group, both the depth and the breadth of trending research areas were notable. For some areas, e.g., microbiome studies, the suggested research questions were primarily of a descriptive nature. In other areas, multiple experimental approaches, e.g., transcriptomics, proteomics, RNAi and gene deletions, are needed to understand the regulation of toxin production and mechanisms underlying successful biological controls. Answers to the research questions will provide starting points for developing acceptable prevention and remediation processes. Forging a partnership between scientists and appropriately-placed communications experts was recognized by both groups as an essential step to communicating risks, while retaining overall confidence in the safety of the food supply and the integrity of the food production chain.


Asunto(s)
Micotoxinas , Animales , Biodiversidad , Monitoreo del Ambiente , Humanos , Micotoxinas/análisis , Micotoxinas/genética , Investigación
10.
Microbiol Res ; 192: 30-36, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27664721

RESUMEN

Bacillus subtilis RC 218 was originally isolated from wheat anthers as a potential antagonist of Fusarium graminearum, the causal agent of Fusarium head blight (FHB). It was demonstrated to have antagonist activity against the plant pathogen under in vitro and greenhouse assays. The current study extends characterizing B. subtilis RC 218 with a field study and genome sequencing. The field study demonstrated that B. subtilis RC 218 could reduce disease severity and the associated mycotoxin (deoxynivalenol) accumulation, under field conditions. The genome sequencing allowed us to accurately determine the taxonomy of the strain using a phylogenomic approach, which places it in the Bacillus velezensis clade. In addition, the draft genome allowed us to use bioinformatics to mine the genome for potential metabolites. The genome mining allowed us to identify 9 active secondary metabolites conserved by all B. velezensis strains and one additional secondary metabolite, the lantibiotic ericin, which is unique to this strain. This study represents the first confirmed production of ericin by a B. velezensis strain. The genome also allowed us to do a comparative genomics with its closest relatives and compare the secondary metabolite production of the publically available B. velezensis genomes. The results showed that the diversity in secondary metabolites of strains in the B. velezensis clade is driven by strains making different antibacterials.


Asunto(s)
Antibiosis , Bacillus/fisiología , Agentes de Control Biológico , Fusarium/fisiología , Enfermedades de las Plantas/microbiología , Tricotecenos/metabolismo , Triticum/metabolismo , Triticum/microbiología , Bacillus/clasificación , Genoma Bacteriano , Genómica/métodos , Metaboloma , Metabolómica/métodos , Filogenia , Metabolismo Secundario
11.
Fungal Genet Biol ; 95: 39-48, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27497828

RESUMEN

Fusarium graminearum and 21 related species comprising the F. sambucinum species complex lineage 1 (FSAMSC-1) are the most important Fusarium Head Blight pathogens of cereal crops world-wide. FSAMSC-1 species typically produce type B trichothecenes. However, some F. graminearum strains were recently found to produce a novel type A trichothecene (NX-2) resulting from functional variation in the trichothecene biosynthetic enzyme Tri1. We used a PCR-RFLP assay targeting the TRI1 gene to identify the NX-2 allele among a global collection of 2515 F. graminearum. NX-2 isolates were only found in southern Canada and the northern U.S., where they were observed at low frequency (1.8%), but over a broader geographic range and set of cereal hosts than previously recognized. Phylogenetic analyses of TRI1 and adjacent genes produced gene trees that were incongruent with the history of species divergence within FSAMSC-1, indicating trans-species evolution of ancestral polymorphism. In addition, placement of NX-2 strains in the TRI1 gene tree was influenced by the accumulation of nonsynonymous substitutions associated with the evolution of the NX-2 chemotype, and a significant (P<0.001) change in selection pressure was observed along the NX-2 branch (ω=1.16) in comparison to other branches (ω=0.17) in the TRI1 phylogeny. Parameter estimates were consistent with positive selection for specific amino-acid changes during the evolution of NX-2, but direct tests of positive selection were not significant. Phylogenetic analyses of fourfold degenerate sites and intron sequences in TRI1 indicated the NX-2 chemotype had a single evolutionary origin and evolved recently from a type B ancestor. Our results indicate the NX-2 chemotype may be indigenous, and possibly endemic, to southern Canada and the northern U.S. In addition, we demonstrate that the evolution of TRI1 within FSAMSC-1 has been complex, with evidence of trans-species evolution and chemotype-specific shifts in selective constraint.


Asunto(s)
Evolución Molecular , Fusarium/genética , Genes Fúngicos/genética , Filogenia , Tricotecenos/genética , Secuencia de Aminoácidos , Biodiversidad , Canadá , ADN de Hongos/análisis , ADN de Hongos/genética , Grano Comestible/microbiología , Proteínas Fúngicas/genética , Fusarium/clasificación , Fusarium/metabolismo , Geografía , Enfermedades de las Plantas/microbiología , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , Polimorfismo de Longitud del Fragmento de Restricción , Especificidad de la Especie , Tricotecenos/biosíntesis , Tricotecenos/química , Estados Unidos
12.
Toxins (Basel) ; 7(8): 3309-29, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26308052

RESUMEN

The aim of this study was to evaluate the occurrence of several fungal metabolites, including mycotoxins in natural grasses (Poaceae) intended for grazing cattle. A total number of 72 and 77 different metabolites were detected on 106 and 69 grass samples collected during 2011 and 2014, respectively. A total of 60 metabolites were found across both years. Among the few mycotoxins considered toxic for ruminants, no samples of natural grasses were contaminated with aflatoxins, ochratoxin A, ergot alkaloids, and gliotoxin, among others. However, we were able to detect important metabolites (toxic to ruminants) such as type A trichothecenes, mainly T-2 toxin and HT-2 toxin (up to 5000 µg/kg each), and zearalenone (up to 2000 µg/kg), all at very high frequencies and levels. Other fungal metabolites that were found to be prevalent were other Fusarium metabolites like beauvericin, equisetin and aurofusarin, metabolites produced by Alternaria spp., sterigmatocystin and its precursors and anthrachinone derivatives. It is important to point out that the profile of common metabolites was shared during both years of sampling, and also that the occurrence of important metabolites is not a sporadic event. Considering that this area of temperate grassland is used for grazing cattle all year long due to the richness in palatable grasses (Poaceae), the present work represents a starting point for further studies on the occurrence of multi-mycotoxins in natural grasses in order to have a complete picture of the extent of cattle exposure. Also, the present study shows that the presence of zeranol in urine of beef cattle may not be a consequence of illegal use of this banned substance, but the product of the natural occurrence of zearalenone and α-zearalenol in natural grasses intended for cattle feeding.


Asunto(s)
Micotoxinas/análisis , Poaceae/química , Alternaria/metabolismo , Animales , Argentina , Bovinos , Fusarium/metabolismo , Herbivoria , Penicillium/metabolismo , Humedales
13.
J Sci Food Agric ; 94(14): 3001-7, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24615727

RESUMEN

BACKGROUND: Aspergillus species belonging to section Nigri are the main fungi responsible for ochratoxin (OTA) contamination in grapes and wine. These species live as saprophytes in the superficial layer of the vineyard soil. We evaluated the biodiversity of potentially ochratoxigenic strains of Aspergillus section Nigri isolated from vineyard soils from different grapevine growing regions of Argentina. The isolates were characterized by classical and molecular methods. A multiple correspondence analysis was performed to identify the overall correlation of the Aspergillus group distribution with environmental conditions, geographical characteristics and vineyard practices. RESULTS: Aspergillus niger aggregate was the prevalent group (71%) and A. carbonarius made up only 2%. Species discrimination by species-specific primers showed that in A. niger aggregate 89% were A. tubingensis; 97% of the uniseriate were A. japonicus/A. aculeatus. Isolates belonging to these groups were unable to produce OTA. Our results clearly demonstrate a strong association between presence of A. carbonarius, high average temperatures and drip irrigation. Precipitation levels appear as a secondary factor, and altitude, vineyard age, predominant species, grape variety or total fungal count showed no association with A. carbonarius. CONCLUSION: We demonstrated a low prevalence of ochratoxigenic species in vineyard soil from the grape-growing regions of Argentina.


Asunto(s)
Agricultura/métodos , Aspergillus/aislamiento & purificación , Microbiología del Suelo , Vitis , Argentina , Aspergillus/clasificación
14.
Plant Dis ; 98(12): 1733-1738, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30703893

RESUMEN

Fusarium poae is a relatively weak pathogen with increasing importance in cereal grains, principally due to its capacity to produce several mycotoxins. In this study, we evaluated the pathogenicity and toxin accumulation of individual F. poae isolates on wheat and barley under natural conditions for 3 years. Analysis of variance demonstrated significant differences for year-genotype, year-isolate, genotype-isolate, and year-genotype-isolate interactions for both incidence and disease severity. Based on contrast analysis, 'Apogee' was more susceptible than the other wheat genotypes, wheat genotypes were more susceptible than barley genotypes, durum wheat genotypes were more susceptible than bread wheat genotypes, and barley genotype 'Scarlett' had greater symptom development per spike than the other barley genotypes. Neither HT-2 nor T-2 toxins were detected in the grain samples. However, high levels of nivalenol were found in both wheat and barley samples. The increased reported isolation of F. poae from wheat and barley and the high capacity of this fungus to produce nivalenol underlie the need for more studies on F. poae-host interactions, especially for barley.

15.
Food Microbiol ; 36(2): 182-90, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24010597

RESUMEN

Aspergillus section Nigri are described as the main source of ochratoxin A (OTA) contamination in grapes and wine worldwide. The knowledge of the factors affecting grape contamination by species included in this section and OTA production is essential to be able to reduce their presence, not only to improve wine quality, but also to maintain their safety. Therefore, the aims of this study were to determine the incidence of Aspergillus section Nigri species harvested in different grape-growing regions from Argentina, their ability to produce OTA, to correlate with meteorological conditions and geographical coordinates with their prevalence and to evaluate the OTA natural occurrence in grapes and wines. The morphological identification showed that Aspergillus niger aggregate species were the most prevalent ones, followed by Aspergillus carbonarius and Aspergillus uniseriate. These populations were confirmed through using AFLP markers and sequencing and, Aspergillus tubingensis was separated from A. niger aggregate. Climatic factors, altitude, longitude and latitude have influenced on the distribution of species included in the section. A. carbonarius and A. niger were OTA producers but differed in their OTA producing ability. Temperature was the factor which influenced the most over the highest incidence of A. carbonarius in La Rioja and San Juan regions. The trellis system in vineyards and drip irrigation also influenced the species isolation. The OTA levels detected in grapes and wines were low, but grape variety was more important in susceptibility to fungal infection and OTA levels.


Asunto(s)
Aspergillus/aislamiento & purificación , Biodiversidad , Contaminación de Alimentos/análisis , Ocratoxinas/biosíntesis , Vitis/microbiología , Argentina , Aspergillus/clasificación , Aspergillus/genética , Aspergillus/metabolismo , Frutas/microbiología , Vino/microbiología
16.
PLoS Pathog ; 9(8): e1003574, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24009506

RESUMEN

Aflatoxins are produced by Aspergillus flavus and A. parasiticus in oil-rich seed and grain crops and are a serious problem in agriculture, with aflatoxin B1 being the most carcinogenic natural compound known. Sexual reproduction in these species occurs between individuals belonging to different vegetative compatibility groups (VCGs). We examined natural genetic variation in 758 isolates of A. flavus, A. parasiticus and A. minisclerotigenes sampled from single peanut fields in the United States (Georgia), Africa (Benin), Argentina (Córdoba), Australia (Queensland) and India (Karnataka). Analysis of DNA sequence variation across multiple intergenic regions in the aflatoxin gene clusters of A. flavus, A. parasiticus and A. minisclerotigenes revealed significant linkage disequilibrium (LD) organized into distinct blocks that are conserved across different localities, suggesting that genetic recombination is nonrandom and a global occurrence. To assess the contributions of asexual and sexual reproduction to fixation and maintenance of toxin chemotype diversity in populations from each locality/species, we tested the null hypothesis of an equal number of MAT1-1 and MAT1-2 mating-type individuals, which is indicative of a sexually recombining population. All samples were clone-corrected using multi-locus sequence typing which associates closely with VCG. For both A. flavus and A. parasiticus, when the proportions of MAT1-1 and MAT1-2 were significantly different, there was more extensive LD in the aflatoxin cluster and populations were fixed for specific toxin chemotype classes, either the non-aflatoxigenic class in A. flavus or the B1-dominant and G1-dominant classes in A. parasiticus. A mating type ratio close to 1∶1 in A. flavus, A. parasiticus and A. minisclerotigenes was associated with higher recombination rates in the aflatoxin cluster and less pronounced chemotype differences in populations. This work shows that the reproductive nature of the population (more sexual versus more asexual) is predictive of aflatoxin chemotype diversity in these agriculturally important fungi.


Asunto(s)
Aflatoxinas/biosíntesis , Aspergillus flavus/metabolismo , Proteínas Fúngicas/metabolismo , Genes Fúngicos/fisiología , Familia de Multigenes/fisiología , Proteínas Represoras/metabolismo , Aflatoxinas/genética , Aspergillus flavus/genética , Proteínas Fúngicas/genética , Proteínas Represoras/genética , Especificidad de la Especie
17.
J Agric Food Chem ; 59(22): 12264-9, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-21999326

RESUMEN

A survey was carried out to determine Fusarium species and fumonisin contamination in 55 durum wheat (Triticum turgidum L. var. durum) samples collected during two harvest seasons (2007 and 2008) using HPLC and further LC-MS/MS confirmation. All samples showed Fusarium contamination with infection levels ranging from 8 to 66%, F. proliferatum being the species most frequently isolated during 2007 and the second most frequently isolated one during the 2008 harvest season, respectively. Natural contamination with fumonisins was found in both harvest seasons. In 2007, 97% of the samples showed total fumonisin (FB(1) + FB(2)) levels ranging from 10.5 to 1245.7 ng/g, while very low levels of fumonisins were detected in samples collected during 2008. These results could be explained by differences in the amount of rainfall during both periods evaluated. A selected number (n = 48) of F. proliferatum isolates showed fumonisin production capability on autoclaved rice. This is the first report of the presence of natural fumonisins in durum wheat grains.


Asunto(s)
Contaminación de Alimentos/análisis , Fumonisinas/análisis , Fusarium/metabolismo , Triticum/química , Triticum/microbiología , Cromatografía Líquida de Alta Presión , Fumonisinas/metabolismo , Espectrometría de Masas en Tándem
18.
J Chromatogr B Analyt Technol Biomed Life Sci ; 879(11-12): 707-15, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21367675

RESUMEN

The understanding of mycotoxins transfer to biological fluids is challenged by the difficulties in performing and replicating in vivo experiments as well as the lack of suitable methods of analysis to detect simultaneously a range of chemically different metabolites at trace levels. LC-MS/MS has been used herein to study the urinary excretion profile of the mycotoxin deoxynivalenol in human and Wistar rat. Deoxynivalenol and deoxynivalenol glucuronide were found in both human and rat urines, whereas de-epoxydeoxynivalenol and its glucuronide conjugate were only detected in rat urine. The presence of two deoxynivalenol glucuronide isomers in Wistar rat urine has been shown for the first time. Structure confirmation of the detected metabolites was provided by the analysis of fragmentation patterns. A solid phase extraction clean up procedure allowing recoveries in the range 72-102% for deoxynivalenol, de-epoxydeoxynivalenol, and their glucuronide conjugates was optimized. A multiple reaction monitoring method for the simultaneous determination of all investigated metabolites was elaborated allowing the direct detection of deoxynivalenol metabolites without the hydrolysis step. Deoxynivalenol urinary levels in the range 0.003-0.008 µg/ml were detected in healthy human subjects, whereas deoxynivalenol and de-epoxynivalenol levels between 1.9-4.9 µg/ml and 1.6-5.9 µg/ml, respectively were found in administered rat urine. These findings emphasize the relevance of the highly selective and sensitive LC-MS/MS technique for the direct detection and characterization of deoxynivalenol metabolites in complex biological matrices.


Asunto(s)
Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Tricotecenos/orina , Adulto , Animales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ratas , Ratas Wistar , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
19.
Mycotoxin Res ; 27(3): 187-94, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23605799

RESUMEN

Fusarium species can produce fumonisins (FBs), fusaric acid, beauvericin (BEA), fusaproliferin (FUS) and moniliformin. Data on the natural occurrence of FBs have been widely reported, but information on BEA and FUS in maize is limited. The aims of this study were to establish the occurrence of Fusarium species in different maize hybrids in Mexico, to determine the ability of Fusarium spp. isolates to produce BEA, FUS and FBs and their natural occurrence in maize. Twenty-eight samples corresponding to seven different maize hybrids were analyzed for mycobiota and natural mycotoxin contamination by LC. Fusarium verticillioides was the dominant species (44-80%) followed by F. subglutinans (13-37%) and F. proliferatum (2-16%). Beauvericin was detected in three different hybrids with levels ranging from 300 to 400 ng g(-1), while only one hybrid was contaminated with FUS (200 ng g(-1)). All samples were positive for FB1 and FB2 contamination showing levels up to 606 and 277 ng g(-1), respectively. All F. verticillioides isolates were able to produce FB1 (13.8-4,860 µg g(-1)) and some also produced FB2 and FUS. Beauvericin, FUS, FB1 and FB2 were produced by several isolates including F. proliferatum and F. subglutinans and co-production was observed. This is the first report on the co-occurrence of these toxins in maize samples from Mexico. The analysis of the presence of multiple mycotoxins in this substrate is necessary to understand the significance of these compounds in the human and animal food chains.

20.
Mycol Res ; 108(Pt 2): 154-60, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15119352

RESUMEN

The production of fumonisins, fusaproliferin and beauvericin by Gibberella fujikuroi different mating populations isolated from maize in Argentina was evaluated. From 203 strains of Fusarium verticillioides (G. fujikuroi mating population A), 193 were fumonisin producers. Among members of mating population A, female fertile strains produced 20% more toxin than female sterile ones. Among 78 Fusarium proliferatum strains (G. fujikuroi mating population D) 65 produced fumonisins. The percentage of strains that were high, intermediate and low level toxin producers varied according to the species evaluated and the area from which the strains were isolated. Fusarium subglutinans (G. fujikuroi mating population E) strains produced low levels or were no fumonisin producers. Strains from both G. fujikuroi mating populations D and E were able to produce fusaproliferin and beauvericin. Among the members of F. subglutinans (G. fujikuroi mating population E) the fusaproliferin production was more constant. Co-production of fumonisin, fusaproliferin and beauvericin among the strains belonging to G. fujikuroi D and E was also observed. The co-production of fumonisin, beauvericin and fusaproliferin in maize need to be considered, since from the toxicological point of view interactions between these toxins could occur. The toxigenic ability of the strains evaluated prompt us that is necessary to determine the natural occurrence of fusaproliferin and beauvericin in Argentinean maize.


Asunto(s)
Cruzamientos Genéticos , Depsipéptidos , Gibberella/metabolismo , Micotoxinas/metabolismo , Argentina , Fumonisinas/metabolismo , Gibberella/genética , Gibberella/fisiología , Péptidos/metabolismo , Fenotipo , Terpenos/metabolismo , Zea mays/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...