Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Autophagy ; 19(5): 1459-1478, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36354155

RESUMEN

During macroautophagy/autophagy, precursor cisterna known as phagophores expand and sequester portions of the cytoplasm and/or organelles, and subsequently close resulting in double-membrane transport vesicles called autophagosomes. Autophagosomes fuse with lysosomes/vacuoles to allow the degradation and recycling of their cargoes. We previously showed that sequential binding of yeast Atg2 and Atg18 to Atg9, the only conserved transmembrane protein in autophagy, at the extremities of the phagophore mediates the establishment of membrane contact sites between the phagophore and the endoplasmic reticulum. As the Atg2-Atg18 complex transfers lipids between adjacent membranes in vitro, it has been postulated that this activity and the scramblase activity of the trimers formed by Atg9 are required for the phagophore expansion. Here, we present evidence that Atg9 indeed promotes Atg2-Atg18 complex-mediated lipid transfer in vitro, although this is not the only requirement for its function in vivo. In particular, we show that Atg9 function is dramatically compromised by a F627A mutation within the conserved interface between the transmembrane domains of the Atg9 monomers. Although Atg9F627A self-interacts and binds to the Atg2-Atg18 complex, the F627A mutation blocks the phagophore expansion and thus autophagy progression. This phenotype is conserved because the corresponding human ATG9A mutant severely impairs autophagy as well. Importantly, Atg9F627A has identical scramblase activity in vitro like Atg9, and as with the wild-type protein enhances Atg2-Atg18-mediated lipid transfer. Collectively, our data reveal that interactions of Atg9 trimers via their transmembrane segments play a key role in phagophore expansion beyond Atg9's role as a lipid scramblase.Abbreviations: BafA1: bafilomycin A1; Cvt: cytoplasm-to-vacuole targeting; Cryo-EM: cryo-electron microscopy; ER: endoplasmic reticulum; GFP: green fluorescent protein; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MCS: membrane contact site; NBD-PE: N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine; PAS: phagophore assembly site; PE: phosphatidylethanolamine; prApe1: precursor Ape1; PtdIns3P: phosphatidylinositol-3-phosphate; SLB: supported lipid bilayer; SUV: small unilamellar vesicle; TMD: transmembrane domain; WT: wild type.


Asunto(s)
Autofagosomas , Proteínas de Saccharomyces cerevisiae , Humanos , Autofagosomas/metabolismo , Autofagia/genética , Microscopía por Crioelectrón , Proteínas Relacionadas con la Autofagia/metabolismo , Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Lípidos , Proteínas de la Membrana/metabolismo
2.
J Phys Chem Lett ; 13(3): 822-829, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35044771

RESUMEN

Analysis of single-molecule brightness allows subunit counting of high-order oligomeric biomolecular complexes. Although the theory behind the method has been extensively assessed, systematic analysis of the experimental conditions required to accurately quantify the stoichiometry of biological complexes remains challenging. In this work, we develop a high-throughput, automated computational pipeline for single-molecule brightness analysis that requires minimal human input. We use this strategy to systematically quantify the accuracy of counting under a wide range of experimental conditions in simulated ground-truth data and then validate its use on experimentally obtained data. Our approach defines a set of conditions under which subunit counting by brightness analysis is designed to work optimally and helps in establishing the experimental limits in quantifying the number of subunits in a complex of interest. Finally, we combine these features into a powerful, yet simple, software that can be easily used for the analysis of the stoichiometry of such complexes.


Asunto(s)
Imagen Individual de Molécula
3.
Biosci Rep ; 40(1)2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31854448

RESUMEN

Protein S-acylation is a reversible post-translational modification involving the addition of fatty acids to cysteines and is catalyzed by transmembrane protein acyltransferases (PATs) mainly expressed at the Golgi complex. In case of soluble proteins, S-acylation confers stable membrane attachment. Myristoylation or farnesylation of many soluble proteins constitutes the initial transient membrane adsorption step prior to S-acylation. However, some S-acylated soluble proteins, such as the neuronal growth-associated protein Growth-associated protein-43 (GAP-43), lack the hydrophobic modifications required for this initial membrane interaction. The signals for GAP-43 S-acylation are confined to the first 13 amino acids, including the S-acylatable cysteines 3 and 4 embedded in a hydrophobic region, followed by a cluster of basic amino acids. We found that mutation of critical basic amino acids drastically reduced membrane interaction and hence S-acylation of GAP-43. Interestingly, acute depletion of phosphatidylinositol 4-phosphate (PtdIns4P) at the Golgi complex reduced GAP-43 membrane binding, highlighting a new, pivotal role for this anionic lipid and supporting the idea that basic amino acid residues are involved in the electrostatic interactions between GAP-43 and membranes of the Golgi complex where they are S-acylated.


Asunto(s)
Homólogo 4 de la Proteína Discs Large/metabolismo , Proteína GAP-43/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Procesamiento Proteico-Postraduccional , Red trans-Golgi/metabolismo , Acilación , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Células CHO , Secuencia Conservada , Cricetulus , Homólogo 4 de la Proteína Discs Large/química , Homólogo 4 de la Proteína Discs Large/genética , Proteína GAP-43/química , Proteína GAP-43/genética , Interacciones Hidrofóbicas e Hidrofílicas , Electricidad Estática , Factores de Tiempo , Red trans-Golgi/genética
4.
Biochem J ; 474(16): 2803-2816, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28698248

RESUMEN

Ganglioside glycosyltransferases (GGTs) are type II membrane proteins bearing a short N-terminal cytoplasmic tail, a transmembrane domain (TMD), and a lumenal catalytic domain. The expression and activity of these enzymes largely determine the quality of the glycolipids that decorate mammalian cell membranes. Many glycosyltransferases (GTs) are themselves glycosylated, and this is important for their proper localisation, but few if any other post-translational modifications of these proteins have been reported. Here, we show that the GGTs, ST3Gal-V, ST8Sia-I, and ß4GalNAcT-I are S-acylated at conserved cysteine residues located close to the cytoplasmic border of their TMDs. ST3Gal-II, a GT that sialylates glycolipids and glycoproteins, is also S-acylated at a conserved cysteine located in the N-terminal cytoplasmic tail. Many other GTs also possess cysteine residues in their cytoplasmic regions, suggesting that this modification occurs also on these GTs. S-acylation, commonly known as palmitoylation, is catalysed by a family of palmitoyltransferases (PATs) that are mostly localised at the Golgi complex but also at the endoplasmic reticulum (ER) and the plasma membrane. Using GT ER retention mutants, we found that S-acylation of ß4GalNAcT-I and ST3Gal-II takes place at different compartments, suggesting that these enzymes are not substrates of the same PAT. Finally, we found that cysteines that are the target of S-acylation on ß4GalNAcT-I and ST3Gal-II are involved in the formation of homodimers through disulphide bonds. We observed an increase in ST3Gal-II dimers in the presence of the PAT inhibitor 2-bromopalmitate, suggesting that GT homodimerisation may be regulating S-acylation.


Asunto(s)
N-Acetilgalactosaminiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Sialiltransferasas/metabolismo , Acilación , Secuencia de Aminoácidos , Animales , Células CHO , Línea Celular , Secuencia Conservada , Cricetulus , Cisteína/metabolismo , Dimerización , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Mutación , N-Acetilgalactosaminiltransferasas/química , N-Acetilgalactosaminiltransferasas/genética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Filogenia , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Sialiltransferasas/química , Sialiltransferasas/genética , beta-Galactosida alfa-2,3-Sialiltransferasa
5.
J Biol Chem ; 290(37): 22448-59, 2015 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-26224664

RESUMEN

Protein S-acyltransferases, also known as palmitoyltransferases (PATs), are characterized by the presence of a 50-amino acid domain called the DHHC domain. Within this domain, these four amino acids constitute a highly conserved motif. It has been proposed that the palmitoylation reaction occurs through a palmitoyl-PAT covalent intermediate that involves the conserved cysteine in the DHHC motif. Mutation of this cysteine results in lack of function for several PATs, and DHHA or DHHS mutants are used regularly as catalytically inactive controls. In a genetic screen to isolate loss-of-function mutations in the yeast PAT Swf1, we isolated an allele encoding a Swf1 DHHR mutant. Overexpression of this mutant is able to partially complement a swf1Δ strain and to acylate the Swf1 substrates Tlg1, Syn8, and Snc1. Overexpression of the palmitoyltransferase Pfa4 DHHA or DHHR mutants also results in palmitoylation of its substrate Chs3. We also investigated the role of the first histidine of the DHHC motif. A Swf1 DQHC mutant is also partially active but a DQHR is not. Finally, we show that Swf1 substrates are differentially modified by both DHHR and DQHC Swf1 mutants. We propose that, in the absence of the canonical mechanism, alternative suboptimal mechanisms take place that are more dependent on the reactivity of the acceptor protein. These results also imply that caution must be exercised when proposing non-canonical roles for PATs on the basis of considering DHHC mutants as catalytically inactive and, more generally, contribute to an understanding of the mechanism of protein palmitoylation.


Asunto(s)
Aciltransferasas/química , Lipoilación/fisiología , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Aciltransferasas/genética , Aciltransferasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Humanos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia
6.
PLoS One ; 6(2): e16969, 2011 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-21383992

RESUMEN

Many proteins are modified after their synthesis, by the addition of a lipid molecule to one or more cysteine residues, through a thioester bond. This modification is called S-acylation, and more commonly palmitoylation. This reaction is carried out by a family of enzymes, called palmitoyltransferases (PATs), characterized by the presence of a conserved 50- aminoacids domain called "Asp-His-His-Cys- Cysteine Rich Domain" (DHHC-CRD). There are 7 members of this family in the yeast Saccharomyces cerevisiae, and each of these proteins is thought to be responsible for the palmitoylation of a subset of substrates. Substrate specificity of PATs, however, is not yet fully understood. Several yeast PATs seem to have overlapping specificity, and it has been proposed that the machinery responsible for palmitoylating peripheral membrane proteins in mammalian cells, lacks specificity altogether.Here we investigate the specificity of transmembrane protein palmitoylation in S. cerevisiae, which is carried out predominantly by two PATs, Swf1 and Pfa4. We show that palmitoylation of transmembrane substrates requires dedicated PATs, since other yeast PATs are mostly unable to perform Swf1 or Pfa4 functions, even when overexpressed. Furthermore, we find that Swf1 is highly specific for its substrates, as it is unable to substitute for other PATs. To identify where Swf1 specificity lies, we carried out a bioinformatics survey to identify amino acids responsible for the determination of specificity or Specificity Determination Positions (SDPs) and showed experimentally, that mutation of the two best SDP candidates, A145 and K148, results in complete and partial loss of function, respectively. These residues are located within the conserved catalytic DHHC domain suggesting that it could also be involved in the determination of specificity. Finally, we show that modifying the position of the cysteines in Tlg1, a Swf1 substrate, results in lack of palmitoylation, as expected for a highly specific enzymatic reaction.


Asunto(s)
Acetiltransferasas/metabolismo , Lipoilación/fisiología , Proteínas de la Membrana/metabolismo , Levaduras/metabolismo , Acetiltransferasas/química , Acetiltransferasas/genética , Acetiltransferasas/fisiología , Aciltransferasas/química , Aciltransferasas/genética , Aciltransferasas/metabolismo , Aciltransferasas/fisiología , Secuencia de Aminoácidos , Dominio Catalítico/genética , Dominio Catalítico/fisiología , Lipoilación/genética , Proteínas de la Membrana/química , Modelos Biológicos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína/fisiología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/fisiología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Homología de Secuencia de Aminoácido , Especificidad por Sustrato/genética , Levaduras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA