Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Biomark Res ; 12(1): 52, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38816856

RESUMEN

Protein tyrosine kinase 2 (PTK2), epidermal growth factor receptor (EGFR), and toll-like receptor (TLRs) are amplified in non-small cell lung cancer (NSCLC). However, the functional and clinical associations between them have not been elucidated yet in NSCLC. By using microarray data of non-small cell lung cancer (NSCLC) tumor tissues and matched normal tissues of 42 NSCLC patients, the genetic and clinical associations between PTK2, EGFR, and TLRs were analyzed in NSCLC patients. To verify the functional association, we generated PTK2-knockout (PTK2-KO) lung cancer cells by using CRISPR-Cas9 gene editing method, and performed in vitro cancer progression assay, including 3D tumor spheroid assay, and in vivo xenografted NSG (NOD/SCID/IL-2Rγnull) mouse assay. Finally, therapeutic effects targeted to PTK2 in lung cancer in response to EGF and TLR agonists were verified by using its inhibitor (Defactinib). In summary, we identified that up-regulated PTK2 might be a reliable marker for EGFR- or TLRs-induced lung cancer progression in NSCLC patients via the regulation of the cross-talk between EGFR- and TLRs-mediated signaling. This study provides a theoretical basis for the therapeutic intervention of PTK2 targeting EGFR- or TLRs-induced lung cancer progression.

2.
Mol Syst Biol ; 20(4): 338-361, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467837

RESUMEN

Microbial biochemistry is central to the pathophysiology of inflammatory bowel diseases (IBD). Improved knowledge of microbial metabolites and their immunomodulatory roles is thus necessary for diagnosis and management. Here, we systematically analyzed the chemical, ecological, and epidemiological properties of ~82k metabolic features in 546 Integrative Human Microbiome Project (iHMP/HMP2) metabolomes, using a newly developed methodology for bioactive compound prioritization from microbial communities. This suggested >1000 metabolic features as potentially bioactive in IBD and associated ~43% of prevalent, unannotated features with at least one well-characterized metabolite, thereby providing initial information for further characterization of a significant portion of the fecal metabolome. Prioritized features included known IBD-linked chemical families such as bile acids and short-chain fatty acids, and less-explored bilirubin, polyamine, and vitamin derivatives, and other microbial products. One of these, nicotinamide riboside, reduced colitis scores in DSS-treated mice. The method, MACARRoN, is generalizable with the potential to improve microbial community characterization and provide therapeutic candidates.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Metaboloma , Ácidos y Sales Biliares
5.
Cancers (Basel) ; 15(15)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37568794

RESUMEN

TLR agonists have emerged as an efficient cancer vaccine adjuvant system that induces robust immune responses. L-pampo™, a proprietary vaccine adjuvant of TLR2 and TLR3 agonists, promotes strong humoral and cellular immune responses against infectious diseases. In this study, we demonstrate that vaccines formulated with L-pampo™ affect the recruitment and activation of dendritic cells (DCs) in draining lymph nodes (dLNs) and leading to antigen-specific T-cell responses and anti-tumor efficacy. We analyzed DC maturation and T-cell proliferation using flow cytometry and ELISA. We determined the effect of L-pampo™ on DCs in dLNs and antigen-specific T-cell responses using flow cytometric analysis and the ELISPOT assay. We employed murine tumor models and analyzed the anti-tumor effect of L-pampo™. We found that L-pampo™ directly enhanced the maturation and cytokine production of DCs and, consequently, T-cell proliferation. OVA or OVA peptide formulated with L-pampo™ promoted DC migration into dLNs and increased activation markers and specific DC subsets within dLNs. In addition, vaccines admixed with L-pampo™ promoted antigen-specific T-cell responses and anti-tumor efficacy. Moreover, the combination of L-pampo™ with an immune checkpoint inhibitor synergistically improved the anti-tumor effect. This study suggests that L-pampo™ can be a potent cancer vaccine adjuvant and a suitable candidate for combination immunotherapy.

6.
Cell Death Dis ; 14(7): 422, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443143

RESUMEN

ß-arrestin 2 (ARRB2) is functionally implicated in cancer progression via various signaling pathways. However, its role in lung cancer remains unclear. To obtain clinical insight on its function in lung cancer, microarray data from lung tumor tissues (LTTs) and matched lung normal tissues (mLNTs) of primary non-small cell lung cancer (NSCLC) patients (n = 37) were utilized. ARRB2 expression levels were markedly decreased in all 37 LTTs compared to those in matched LNTs of NSCLC patients. They were significantly co-related to enrichment gene sets associated with oncogenic and cancer genes. Importantly, Gene Set Enrichment Analysis (GSEA) between three LTTs with highly down-regulated ARRB2 and three LTTs with lowly down-regulated ARRB2 revealed significant enrichments related to toll-like receptor (TLR) signaling and autophagy genes in three LTTs with highly down-regulated ARRB2, suggesting that ARRB2 was negatively involved in TLR-mediated signals for autophagy induction in lung cancer. Biochemical studies for elucidating the molecular mechanism revealed that ARRB2 interacted with TNF receptor-associated factor 6 (TRAF6) and Beclin 1 (BECN1), thereby inhibiting the ubiquitination of TRAF6-TAB2 to activate NF-κB and TRAF6-BECN1 for autophagy stimulated by TLR3 and TLR4, suggesting that ARRB2 could inhibit the TRAF6-TAB2 signaling axis for NF-κB activation and TRAF6-BECN1 signaling axis for autophagy in response to TLR3 and TLR4. Notably, ARRB2-knockout (ARRB2KO) lung cancer cells exhibited marked enhancements of cancer migration, invasion, colony formation, and proliferation in response to TLR3 and TLR4 stimulation. Altogether, our current data suggest that ARRB2 can negatively regulate lung cancer progression by inhibiting TLR3- and TLR4-induced autophagy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , FN-kappa B/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Neoplasias Pulmonares/patología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 3/metabolismo , Arrestina beta 2/genética , Arrestina beta 2/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Receptores Toll-Like/metabolismo , Pulmón/metabolismo , Autofagia/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo
7.
Cell Biosci ; 13(1): 102, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37287005

RESUMEN

BACKGROUND: Free fatty acid receptors (FFARs) and toll-like receptors (TLRs) recognize microbial metabolites and conserved microbial products, respectively, and are functionally implicated in inflammation and cancer. However, whether the crosstalk between FFARs and TLRs affects lung cancer progression has never been addressed. METHODS: We analyzed the association between FFARs and TLRs using The Cancer Genome Atlas (TCGA) lung cancer data and our cohort of non-small cell lung cancer (NSCLC) patient data (n = 42), and gene set enrichment analysis (GSEA) was performed. For the functional analysis, we generated FFAR2-knockout (FFAR2KO) A549 and FFAR2KO H1299 human lung cancer cells and performed biochemical mechanistic studies and cancer progression assays, including migration, invasion, and colony-formation assays, in response to TLR stimulation. RESULTS: The clinical TCGA data showed a significant down-regulation of FFAR2, but not FFAR1, FFAR3, and FFAR4, in lung cancer, and a negative correlation with TLR2 and TLR3. Notably, GSEA showed significant enrichment in gene sets related to the cancer module, the innate signaling pathway, and the cytokine-chemokine signaling pathway in FFAR2DownTLR2UpTLR3Up lung tumor tissues (LTTs) vs. FFAR2upTLR2DownTLR3Down LTTs. Functionally, treatment with propionate (an agonist of FFAR2) significantly inhibited human A549 or H1299 lung cancer migration, invasion, and colony formation induced by TLR2 or TLR3 through the attenuation of the cAMP-AMPK-TAK1 signaling axis for the activation of NF-κB. Moreover, FFAR2KO A549 and FFAR2KO H1299 human lung cancer cells showed marked increases in cell migration, invasion, and colony formation in response to TLR2 or TLR3 stimulation, accompanied by elevations in NF-κB activation, cAMP levels, and the production of C-C motif chemokine ligand (CCL)2, interleukin (IL)-6, and matrix metalloproteinase (MMP) 2 cytokines. CONCLUSION: Our results suggest that FFAR2 signaling antagonized TLR2- and TLR3-induced lung cancer progression via the suppression of the cAMP-AMPK-TAK1 signaling axis for the activation of NF-κB, and its agonist might be a potential therapeutic agent for the treatment of lung cancer.

9.
Cell Host Microbe ; 30(9): 1295-1310.e8, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35985335

RESUMEN

The intestinal epithelium plays critical roles in sensing and integrating dietary and microbial signals. How microbiota and intestinal epithelial cell (IEC) interactions regulate host physiology in the proximal small intestine, particularly the duodenum, is unclear. Using single-cell RNA sequencing of duodenal IECs under germ-free (GF) and different conventional microbiota compositions, we show that specific microbiota members alter epithelial homeostasis by increasing epithelial turnover rate, crypt proliferation, and major histocompatibility complex class II (MHCII) expression. Microbiome profiling identified Faecalibaculum rodentium as a key species involved in this regulation. F. rodentium decreases enterocyte expression of retinoic-acid-producing enzymes Adh1, Aldh1a1, and Rdh7, reducing retinoic acid signaling required to maintain certain intestinal eosinophil populations. Eosinophils suppress intraepithelial-lymphocyte-mediated production of interferon-γ that regulates epithelial cell function. Thus, we identify a retinoic acid-eosinophil-interferon-γ-dependent circuit by which the microbiota modulates duodenal epithelial homeostasis.


Asunto(s)
Eosinófilos , Tretinoina , Citrobacter rodentium , Células Epiteliales/metabolismo , Firmicutes , Homeostasis , Interferón gamma/metabolismo , Mucosa Intestinal/metabolismo , Tretinoina/metabolismo
11.
Cell Death Dis ; 13(4): 348, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35422093

RESUMEN

TNF receptor-associated factor 6 (TRAF6)-BECN1 signaling axis plays a pivotal role in autophagy induction through ubiquitination of BECN1, thereby inducing lung cancer migration and invasion in response to toll-like receptor 4 (TLR4) stimulation. Herein, we provide novel molecular and cellular mechanisms involved in the negative effect of ubiquitin-specific peptidase 15 (USP15) on lung cancer progression. Clinical data of the TCGA and primary non-small cell lung cancer (NSCLC) patients (n = 41) revealed that the expression of USP15 was significantly downregulated in lung cancer patients. Importantly, USP15-knockout (USP15KO) A549 and USP15KO H1299 lung cancer cells generated with CRISPR-Cas9 gene-editing technology showed increases in cancer migration and invasion with enhanced autophagy induction in response to TLR4 stimulation. In addition, biochemical studies revealed that USP15 interacted with BECN1, but not with TRAF6, and induced deubiquitination of BECN1, thereby attenuating autophagy induction. Notably, in primary NSCLC patients (n = 4) with low expression of USP15, 10 genes (CCNE1, MMP9, SFN, UBE2C, CCR2, FAM83A, ETV4, MYO7A, MMP11, and GSDMB) known to promote lung cancer progression were significantly upregulated, whereas 10 tumor suppressor genes (FMO2, ZBTB16, FCN3, TCF21, SFTPA1B, HPGD, SOSTDC1, TMEM100, GDF10, and WIF1) were downregulated, providing clinical relevance of the functional role of USP15 in lung cancer progression. Taken together, our data demonstrate that USP15 can negatively regulate the TRAF6-BECN1 signaling axis for autophagy induction. Thus, USP15 is implicated in lung cancer progression.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Beclina-1/genética , Beclina-1/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/patología , Proteínas de la Membrana , Proteínas de Neoplasias/genética , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptor Toll-Like 4/metabolismo , Proteasas Ubiquitina-Específicas , Ubiquitinación
12.
Transl Oncol ; 15(1): 101250, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34688043

RESUMEN

Herein, we aimed to elucidate the molecular and cellular mechanism in which ubiquitin-specific protease 8 (USP8) is implicated in liver cancer progression via TRAF6-mediated signal. USP8 induces the deubiquitination of TRAF6, TAB2, TAK1, p62, and BECN1, which are pivotal roles for NF-κB activation and autophagy induction. Notably, the LIHC patient with low USP8 mRNA expression showed markedly shorter survival time, whereas there was no significant difference in the other 18-human cancers. Importantly, the TCGA data analysis on LIHC and transcriptome analysis on the USP8 knockout (USP8KO) SK-HEP-1 cells revealed a significant correlation between USP8 and TRAF6, TAB2, TAK1, p62, and BECN1, and enhanced NF-κB-dependent and autophagy-related cancer progression/metastasis-related genes in response to LPS stimulation. Furthermore, USP8KO SK-HEP-1 cells showed an increase in cancer migration and invasion by TLR4 stimulation, and a marked increase of tumorigenicity and metastasis in xenografted NSG mice. The results demonstrate that USP8 is negatively implicated in the LIHC progression through the regulation of TRAF6-mediated signal for the activation of NF-κB activation and autophagy induction. Our findings provide useful insight into the LIHC pathogenesis of cancer progression.

13.
Immune Netw ; 21(5): e37, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34796041

RESUMEN

Hepatitis B virus X (HBx) protein has been reported as a key protein regulating the pathogenesis of HBV-induced hepatocellular carcinoma (HCC). Recent evidence has shown that HBx is implicated in the activation of autophagy in hepatic cells. Nevertheless, the precise molecular and cellular mechanism by which HBx induces autophagy is still controversial. Herein, we investigated the molecular and cellular mechanism by which HBx is involved in the TRAF6-BECN1-Bcl-2 signaling for the regulation of autophagy in response to TLR4 stimulation, therefore influencing the HCC progression. HBx interacts with BECN1 (Beclin 1) and inhibits the association of the BECN1-Bcl-2 complex, which is known to prevent the assembly of the pre-autophagosomal structure. Furthermore, HBx enhances the interaction between VPS34 and TRAF6-BECN1 complex, increases the ubiquitination of BECN1, and subsequently enhances autophagy induction in response to LPS stimulation. To verify the functional role of HBx in liver cancer progression, we utilized different HCC cell lines, HepG2, SK-Hep-1, and SNU-761. HBx-expressing HepG2 cells exhibited enhanced cell migration, invasion, and cell mobility in response to LPS stimulation compared to those of control HepG2 cells. These results were consistently observed in HBx-expressed SK-Hep-1 and HBx-expressed SNU-761 cells. Taken together, our findings suggest that HBx positively regulates the induction of autophagy through the inhibition of the BECN1-Bcl-2 complex and enhancement of the TRAF6-BECN1-VPS34 complex, leading to enhance liver cancer migration and invasion.

14.
Vaccines (Basel) ; 9(9)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34579194

RESUMEN

The development of COVID-19 vaccines is critical in controlling global health issues under the COVID-19 pandemic. The subunit vaccines are the safest and most widely used vaccine platform and highly effective against a multitude of infectious diseases. An adjuvant is essential for subunit vaccines to enhance the magnitude and durability of immune responses. In this study, we determined whether a combination of toll-like receptor (TLR)1/2 and TLR3 agonists (L-pampo) can be a potent adjuvant for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) subunit vaccine. We measured a neutralizing antibody (nAb) and an angiotensin-converting enzyme 2 (ACE2) receptor-blocking antibody against SARS-CoV-2 receptor-binding domain (RBD). We also detected interferon-gamma (IFN-γ) production by using ELISPOT and ELISA assays. By employing a ferret model, we detected nAbs and IFN-γ producing cells and measured viral load in nasal wash after the challenge of SARS-CoV-2. We found that SARS-CoV-2 antigens with L-pampo stimulated robust humoral and cellular immune responses. The efficacy of L-pampo was higher than the other adjuvants. Furthermore, in the ferret model, SARS-CoV-2 antigens with L-pampo elicited nAb response and antigen-specific cellular immune response against SARS-CoV-2, resulting in substantially decreased viral load in their nasal wash. Our study suggests that SARS-CoV-2 antigens formulated with TLR agonists, L-pampo, can be a potent subunit vaccine to promote sufficient protective immunity against SARS-CoV-2.

15.
Gastroenterology ; 158(5): 1359-1372.e9, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31917258

RESUMEN

BACKGROUND & AIMS: Intestinal microbes and their metabolites affect the development of colorectal cancer (CRC). Short-chain fatty acids are metabolites generated by intestinal microbes from dietary fiber. We investigated the mechanisms by which free fatty acid receptor 2 (FFAR2), a receptor for short-chain fatty acids that can affect the composition of the intestinal microbiome, contributes to the pathogenesis of CRC. METHODS: We performed studies with ApcMin/+ mice, ApcMin/+Ffar2-/- mice, mice with conditional disruption of Ffar2 in dendritic cells (DCs) (Ffar2fl/flCD11c-Cre mice), ApcMin/+Ffar2fl/flCD11c-Cre mice, and Ffar2fl/fl mice (controls); some mice were given dextran sodium sulfate to induce colitis, with or without a FFAR2 agonist or an antibody against interleukin 27 (IL27). Colon and tumor tissues were analyzed by histology, quantitative polymerase chain reaction, and 16S ribosomal RNA gene sequencing; lamina propria and mesenteric lymph node tissues were analyzed by RNA sequencing and flow cytometry. Intestinal permeability was measured after gavage with fluorescently labeled dextran. We collected data on colorectal tumors from The Cancer Genome Atlas. RESULTS: ApcMin/+Ffar2-/- mice developed significantly more spontaneous colon tumors than ApcMin/+ mice and had increased gut permeability before tumor development, associated with reduced expression of E-cadherin. Colon tumors from ApcMin/+Ffar2-/- mice had a higher number of bacteria than tumors from ApcMin/+ mice, as well as higher frequencies of CD39+CD8+ T cells and exhausted or dying T cells. DCs from ApcMin/+Ffar2-/- mice had an altered state of activation, increased death, and higher production of IL27. Administration of an antibody against IL27 reduced the numbers of colon tumors in ApcMin/+ mice with colitis. Frequencies of CD39+CD8+ T cells and IL27+ DCs were increased in colon lamina propria from Ffar2fl/flCD11c-Cre mice with colitis compared with control mice or mice without colitis. ApcMin/+Ffar2fl/flCD11c-Cre mice developed even more tumors than ApcMin/+Ffar2fl/fl mice, and their tumors had even higher numbers of IL27+ DCs. ApcMin/+ mice with colitis given the FFAR2 agonist developed fewer colon tumors, with fewer IL27+ DCs, than mice not given the agonist. DCs incubated with the FFAR2 agonist no longer had gene expression patterns associated with activation or IL27 production. CONCLUSIONS: Loss of FFAR2 promotes colon tumorigenesis in mice by reducing gut barrier integrity, increasing tumor bacterial load, promoting exhaustion of CD8+ T cells, and overactivating DCs, leading to their death. Antibodies against IL27 and an FFAR2 agonist reduce tumorigenesis in mice and might be developed for the treatment of CRC.


Asunto(s)
Colitis/patología , Neoplasias del Colon/inmunología , Células Dendríticas/inmunología , Microbioma Gastrointestinal/inmunología , Interleucinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinogénesis/inmunología , Colitis/inducido químicamente , Colitis/inmunología , Colon/efectos de los fármacos , Colon/microbiología , Colon/patología , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Células Dendríticas/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ácidos Grasos no Esterificados/metabolismo , Femenino , Humanos , Interleucinas/inmunología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Noqueados , Permeabilidad , Cultivo Primario de Células , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética
16.
Front Immunol ; 10: 2203, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31620128

RESUMEN

Cereblon (CRBN) as a multifunctional protein has been extensively studied. Here, we show that CRBN is a negative regulator of bactericidal activity and autophagy activation. Mitochondrial localization of CRBN was significantly increased in response to Toll-like receptor 4 (TLR4) stimulation. CRBN interrupted the association of evolutionarily conserved signaling intermediate in Toll pathways (ECSIT)-TNF-receptor associated factor 6 (TRAF6) complex, thereby inhibiting the ubiquitination of ECSIT, which plays a pivotal role for the production of mitochondrial reactive oxygen species (mROS). Subsequently, mROS levels were markedly elevated in CRBN-knockdown (CRBNKD) THP-1 cells, and that led to resistance against S. typhimurium infection, indicating CRBN is a negative regulator of bactericidal activity through the regulation of mROS. Additionally, CRBN inhibited TRAF6-induced ubiquitination of BECN1 (Beclin 1), and that induced autophagy activation in CRBNKD THP-1, CRBN-knockout (CRBNKO) H1299, and CRBNKO MCF7 cancer cells in response to TLR4 stimulation. Notably, we found that the ability of cancer migration and invasion was significantly enhanced in CRBNKO H1299 and CRBNKO MCF7 cancer cells, as compared with those of control cancer cells. Collectively, these results suggest that CRBN is a negative regulator of bactericidal activity and autophagy activation through inhibiting the TRAF6-induced ubiquitination of ECSIT and BECN1, respectively.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia/fisiología , Beclina-1/metabolismo , Estrés Oxidativo/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/inmunología , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/metabolismo , Beclina-1/inmunología , Humanos , Especies Reactivas de Oxígeno/metabolismo , Ubiquitina-Proteína Ligasas/inmunología , Ubiquitinación/fisiología
17.
Immunity ; 51(5): 871-884.e6, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31628054

RESUMEN

Group 3 innate lymphoid cells (ILC3s) sense environmental signals that are critical for gut homeostasis and host defense. However, the metabolite-sensing G-protein-coupled receptors that regulate colonic ILC3s remain poorly understood. We found that colonic ILC3s expressed Ffar2, a microbial metabolite-sensing receptor, and that Ffar2 agonism promoted ILC3 expansion and function. Deficiency of Ffar2 in ILC3s decreased their in situ proliferation and ILC3-derived interleukin-22 (IL-22) production. This led to impaired gut epithelial function characterized by altered mucus-associated proteins and antimicrobial peptides and increased susceptibility to colonic injury and bacterial infection. Ffar2 increased IL-22+ CCR6+ ILC3s and influenced ILC3 abundance in colonic lymphoid tissues. Ffar2 agonism differentially activated AKT or ERK signaling and increased ILC3-derived IL-22 via an AKT and STAT3 axis. Our findings suggest that Ffar2 regulates colonic ILC3 proliferation and function, and they identify an ILC3-receptor signaling pathway modulating gut homeostasis and pathogen defense.


Asunto(s)
Inmunidad Innata , Inmunidad Mucosa , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Biomarcadores , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Microbioma Gastrointestinal/inmunología , Expresión Génica , Humanos , Inmunomodulación , Mucosa Intestinal/patología , Activación de Linfocitos/inmunología , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt , Receptores de Superficie Celular/agonistas , Factor de Transcripción STAT3/metabolismo
18.
Science ; 363(6428)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30765538

RESUMEN

Certain Escherichia coli strains residing in the human gut produce colibactin, a small-molecule genotoxin implicated in colorectal cancer pathogenesis. However, colibactin's chemical structure and the molecular mechanism underlying its genotoxic effects have remained unknown for more than a decade. Here we combine an untargeted DNA adductomics approach with chemical synthesis to identify and characterize a covalent DNA modification from human cell lines treated with colibactin-producing E. coli Our data establish that colibactin alkylates DNA with an unusual electrophilic cyclopropane. We show that this metabolite is formed in mice colonized by colibactin-producing E. coli and is likely derived from an initially formed, unstable colibactin-DNA adduct. Our findings reveal a potential biomarker for colibactin exposure and provide mechanistic insights into how a gut microbe may contribute to colorectal carcinogenesis.


Asunto(s)
Carcinogénesis/metabolismo , Neoplasias Colorrectales/microbiología , Ciclopropanos/metabolismo , Aductos de ADN/metabolismo , Daño del ADN , Escherichia coli/metabolismo , Microbioma Gastrointestinal , Mutágenos/metabolismo , Péptidos/metabolismo , Policétidos/metabolismo , Alquilantes , Alquilación , Animales , Carcinogénesis/genética , Neoplasias Colorrectales/genética , Ciclopropanos/química , Escherichia coli/patogenicidad , Vida Libre de Gérmenes , Células HT29 , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Mutágenos/toxicidad , Péptidos/química , Péptidos/toxicidad , Policétidos/química , Policétidos/toxicidad
19.
Elife ; 82019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30666959

RESUMEN

Inflammatory bowel disease (IBD) is driven by dysfunction between host genetics, the microbiota, and immune system. Knowledge gaps remain regarding how IBD genetic risk loci drive gut microbiota changes. The Crohn's disease risk allele ATG16L1 T300A results in abnormal Paneth cells due to decreased selective autophagy, increased cytokine release, and decreased intracellular bacterial clearance. To unravel the effects of ATG16L1 T300A on the microbiota and immune system, we employed a gnotobiotic model using human fecal transfers into ATG16L1 T300A knock-in mice. We observed increases in Bacteroides ovatus and Th1 and Th17 cells in ATG16L1 T300A mice. Association of altered Schaedler flora mice with B. ovatus specifically increased Th17 cells selectively in ATG16L1 T300A knock-in mice. Changes occur before disease onset, suggesting that ATG16L1 T300A contributes to dysbiosis and immune infiltration prior to disease symptoms. Our work provides insight for future studies on IBD subtypes, IBD patient treatment and diagnostics.


Asunto(s)
Proteínas Relacionadas con la Autofagia/genética , Enfermedad de Crohn/genética , Enfermedad de Crohn/microbiología , Microbioma Gastrointestinal , Células TH1/citología , Células Th17/citología , Alelos , Animales , Bacteroides , Disbiosis/genética , Disbiosis/microbiología , Trasplante de Microbiota Fecal , Heces/microbiología , Técnicas de Sustitución del Gen , Genotipo , Humanos , Sistema Inmunológico , Ratones , Polimorfismo Genético , Riesgo , Células TH1/microbiología , Células Th17/microbiología
20.
Autophagy ; 14(8): 1347-1358, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29929436

RESUMEN

TRAF6 (TNF receptor associated factor 6) plays a pivotal role in NFKB activation and macroautphagy/autophagy activation induced by TLR4 (toll like receptor 4) signaling. The objective of this study was to determine the functional role of PRDX1 (peroxiredoxin 1) in NFKB activation and autophagy activation. PRDX1 interacted with the ring finger domain of TRAF6 and inhibited its ubiquitin-ligase activity. The inhibition on TRAF6 ubiquitin-ligase activity by PRDX1 induced the suppression of ubiquitination of an evolutionarily conserved signaling intermediate in Toll pathways (ECSIT) essential for NFKB activation and BECN1 (beclin 1) required for autophagy activation. An inhibitory effect of PRDX1 on TRAF6 was clearly evidenced in PRDX1-knockdown (PRDX1KD) THP-1, PRDX1KD MDA-MB-231, and PRDX1KD SK-HEP-1 cells. PRDX1KD THP-1 cells showed increases of NFKB activation, pro-inflammatory cytokine production, NFKB-dependent gene expression induced by TLR4 stimulation, and resistance against Salmonella typhimurium infection. Additionally, migration and invasion abilities of PRDX1KD MDA-MB-231 and PRDX1KD SK-HEP-1 cancer cells were significantly enhanced compared to those of control cancer cells. Taken together, these results suggest that PRDX1 negatively regulates TLR4 signaling for NFKB activation and autophagy functions such as bactericidal activity, cancer cell migration, and cancer cell invasion by inhibiting TRAF6 ubiquitin-ligase activity. ABBREVIATIONS: 3-MA: 3-methyladenine; BECN1: beclin 1; CHUK/IKKA: conserved helix-loop-helix ubiquitous kinase; ECSIT: ECSIT signalling integrator; ELISA: enzyme-linked immunosorbent assay; NFKB: nuclear factor kappa-light-chain-enhancer of activated B cells; IB: immunoblotting; IKBKB/IKKB: inhibitor of nuclear factor kappa B kinase subunit beta; IL1B: interleukin 1 beta; IL6: interleukin 6; IP: immunoprecipitation; LPS: lipopolysaccharide; MAP1LC3/LC3: microtuble associated protein 1 light chain 3; MAP3K7/TAK1: mitogen-activated protein kinase kinase kinase 7; MAPK14/p38: mitogen-activated protein kinase 14; mROS: mitochondrial reactive oxygen species; PRDX1: peroxiredoxin 1; PRDX6: peroxiredoxin 6; RELA/p65: RELA proto-oncogene, NF-kB subunit; TRAF6 TNF: receptor associated factor 6.


Asunto(s)
Autofagia , FN-kappa B/antagonistas & inhibidores , Peroxirredoxinas/metabolismo , Factor 6 Asociado a Receptor de TNF/antagonistas & inhibidores , Beclina-1/metabolismo , Progresión de la Enfermedad , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Modelos Biológicos , FN-kappa B/metabolismo , Unión Proteica , Proto-Oncogenes Mas , Transducción de Señal , Células THP-1 , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptor Toll-Like 4/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA