Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37569773

RESUMEN

Cisplatin is a potent chemotherapeutic drug for ovarian cancer (OC) treatment. However, its efficacy is significantly limited due to the development of cisplatin resistance. Although the acquisition of cisplatin resistance is a complex process involving various molecular alterations within cancer cells, the increased reliance of cisplatin-resistant cells on glycolysis has gained increasing attention. Isoalantolactone, a sesquiterpene lactone isolated from Inula helenium L., possesses various pharmacological properties, including anticancer activity. In this study, isoalantolactone was investigated as a potential glycolysis inhibitor to overcome cisplatin resistance in OC. Isoalantolactone effectively targeted key glycolytic enzymes (e.g., lactate dehydrogenase A, phosphofructokinase liver type, and hexokinase 2), reducing glucose consumption and lactate production in cisplatin-resistant OC cells (specifically A2780 and SNU-8). Importantly, it also sensitized these cells to cisplatin-induced apoptosis. Isoalantolactone-cisplatin treatment regulated mitogen-activated protein kinase and AKT pathways more effectively in cisplatin-resistant cells than individual treatments. In vivo studies using cisplatin-sensitive and resistant OC xenograft models revealed that isoalantolactone, either alone or in combination with cisplatin, significantly suppressed tumor growth in cisplatin-resistant tumors. These findings highlight the potential of isoalantolactone as a novel glycolysis inhibitor for treating cisplatin-resistant OC. By targeting the dysregulated glycolytic pathway, isoalantolactone offers a promising approach to overcoming drug resistance and enhancing the efficacy of cisplatin-based therapies.

2.
Plants (Basel) ; 12(15)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37570999

RESUMEN

Euphorbia ebracteolata Hayata (Euphorbiaceae family) is a perennial plant that is widely distributed in Korea, Japan, and China. Its roots contain bioactive diterpenes that have anti-inflammatory properties. However, the anti-inflammatory mechanisms are not yet fully understood. This study aimed to identify the most active anti-inflammatory compound from the roots of E. ebracteolata Hayata, using bioassay-guided fractionation and a combinative method of high-speed countercurrent chromatography (HSCCC) and preparative high-performance liquid chromatography (HPLC). Then, we investigated its anti-inflammatory mechanism in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Ebractenoid F was identified as the most potent bioactive compound of E. ebracteolata Hayata. Ebractenoid F significantly decreased nitric oxide (NO) production and nuclear factor-κB (NF-κB) activation induced by LPS in RAW 264.7 macrophages. Moreover, ebractenoid F decreased the degradation of inhibitory κB-α, the nuclear translocation of the p65 and p50 subunits of NF-κB, and the expression of NF-κB downstream genes. Furthermore, ebractenoid F inhibited the phosphorylation of Akt and mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK) and c-Jun NH2 terminal kinase (JNK), in LPS-stimulated RAW 264.7 cells. In conclusion, ebractenoid F exerts the most potent anti-inflammatory effect by suppressing NF-κB-mediated NO production in LPS-stimulated RAW 264.7 cells. Ebractenoid F may be a useful therapeutic compound for the prevention or treatment of inflammation-associated diseases.

3.
Front Pharmacol ; 14: 1181263, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37274110

RESUMEN

Atezolizumab (a PD-L1 inhibitor) has shown remarkable efficacy and tolerability in various cancer types. Despite its efficacy and safety, atezolizumab monotherapy has limitations, such as acquired resistance and adverse events. Bojungikki-tang (BJIKT) is an herbal decoction widely prescribed in Asian countries and used to treat cancer-related symptoms including fatigue, appetite loss, gastrointestinal disorders, and other side effects from cancer therapy. Due to its immunomodulatory effects, Bojungikki-tang has been investigated as a combined treatment with anticancer agents. We evaluated the potential drug-drug interaction (DDI) between Bojungikki-tang and the anti-PD-L1 antibody based on the Food and Drug Administration (FDA) guidelines. In the study, we conducted an in vivo drug-drug interaction study using a syngeneic mouse model of CMT-167 in C57BL/6. We then determined the antibody concentrations to evaluate the pharmacokinetic (PK) drug-drug interaction and measured variable biomarkers related to therapeutic efficacy and immune response. The pharmacodynamic (PD) drug-drug interaction study investigated changes in response between anti-PD-L1 antibody monotherapy and combination therapy. Using the pharmacokinetic and pharmacodynamic data, we conducted a statistical analysis to assess drug-drug interaction potential. In the presence of Bojungikki-tang, the pharmacokinetic characteristics of the anti-PD-L1 antibody were not changed. This study suggested that combination treatment with Bojungikki-tang and atezolizumab is a safe treatment option for non-small cell lung cancer. Clinical studies are warranted to confirm this finding.

4.
Artículo en Inglés | MEDLINE | ID: mdl-36901517

RESUMEN

Cancer immunotherapy with immune checkpoint inhibitors (ICIs) is a major treatment option for several types of cancer, including non-small cell lung cancer (NSCLC). The proposed study aims to investigate the safety and efficacy of Bojungikki-tang (BJIKT) therapy (an herbal medicine) in patients with advanced NSCLC treated with ICIs. This multicenter, randomized, placebo-controlled pilot study will be performed at three academic hospitals. Thirty patients with advanced NSCLC, undergoing atezolizumab monotherapy as second- and subsequent-line treatment, will be recruited and randomly assigned to either BJIKT treatment (atezolizumab + BJIKT) or placebo (atezolizumab + placebo). The primary and secondary outcomes are the incidence of adverse events (AEs), including immune- related AEs (irAEs) and non-immune-related AEs (non-irAEs); and early termination rate, withdrawal period, symptom improvement of fatigue, and skeletal muscle loss, respectively. The exploratory outcomes are patient objective response rate and immune profile. This is an ongoing trial. Recruitment started on 25 March 2022 and is expected to be completed by 30 June 2023. This study will provide basic evidence for the safety profiles, including irAEs, of herbal medicine in patients with advanced NSCLC treated with ICIs.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Proyectos Piloto , Extractos Vegetales/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como Asunto
5.
Cancers (Basel) ; 15(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36765611

RESUMEN

Treatment strategies combining immune checkpoint inhibitors with sesquiterpene lactones have attracted much attention as a promising approach for cancer treatment. We systemically analyzed gene expression profiles of cells in response to two major sesquiterpene lactones, alantolactone and isoalantolactone, and determined whether the sesquiterpene lactone-rich fraction of Inula helenium L. (SFIH) enhances the antitumor effect of anti-PD-1 antibody in MC38 colorectal cancer-bearing mice. Gene expression and pathway analysis using RNA sequencing data were used to identify the SFIH-driven combined activity with anti-PD-1 antibody. The results showed that SFIH significantly enhanced the antitumor effect of anti-PD-1 antibody by reducing tumor growth and increasing the survival time of mice. Specifically, SFIH exhibited antitumor activity when combined with anti-PD-1 antibody, and the effects were further enhanced compared with monotherapy. An analysis of immune cells indicated that combination treatment with SFIH and anti-PD-1 antibody significantly increased the proportion of CD8+ T cells. Moreover, combination treatment enhanced antitumor immunity by decreasing the population of myeloid-derived suppressor cells and increasing the number of M1-like macrophages. Pathway enrichment analysis revealed that combination therapy activated immune-related pathways to a greater extent than monotherapy. In conclusion, our integrative analysis demonstrates that SFIH enhances the response of murine tumors to anti-PD-1 antibody. These findings provide insight into developing integrative therapeutics and molecular data for the use of natural products as an adjunct treatment for colorectal cancer.

6.
Cell Rep ; 41(11): 111827, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516759

RESUMEN

The cancer metastasis process involves dysregulated oncogenic kinase signaling, but how this orchestrates metabolic networks and signal cascades to promote metastasis is largely unclear. Here we report that inhibition of glutamate dehydrogenase 1 (GDH1) and ribosomal S6 kinase 2 (RSK2) synergistically attenuates cell invasion, anoikis resistance, and immune escape in lung cancer and more evidently in tumors harboring epidermal growth factor receptor (EGFR)-activating or EGFR inhibitor-resistant mutations. Mechanistically, GDH1 is activated by EGFR through phosphorylation at tyrosine 135 and, together with RSK2, enhances the cAMP response element-binding protein (CREB) activity via CaMKIV signaling, thereby promoting metastasis. Co-targeting RSK2 and GDH1 leads to enhanced intratumoral CD8 T cell infiltration. Moreover, GDH1, RSK2, and CREB phosphorylation positively correlate with EGFR mutation and activation in lung cancer patient tumors. Our findings reveal a crosstalk between kinase, metabolic, and transcription machinery in metastasis and offer an alternative combinatorial therapeutic strategy to target metastatic cancers with activated EGFRs that are often EGFR therapy resistant.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Neoplasias Pulmonares , Humanos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Receptores ErbB/metabolismo , Neoplasias Pulmonares/patología , Fosforilación , Línea Celular Tumoral
7.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36233051

RESUMEN

Reactive oxygen species (ROS) induce carcinogenesis by causing genetic mutations, activating oncogenes, and increasing oxidative stress, all of which affect cell proliferation, survival, and apoptosis. When compared to normal cells, cancer cells have higher levels of ROS, and they are responsible for the maintenance of the cancer phenotype; this unique feature in cancer cells may, therefore, be exploited for targeted therapy. Quercetin (QC), a plant-derived bioflavonoid, is known for its ROS scavenging properties and was recently discovered to have various antitumor properties in a variety of solid tumors. Adaptive stress responses may be induced by persistent ROS stress, allowing cancer cells to survive with high levels of ROS while maintaining cellular viability. However, large amounts of ROS make cancer cells extremely susceptible to quercetin, one of the most available dietary flavonoids. Because of the molecular and metabolic distinctions between malignant and normal cells, targeting ROS metabolism might help overcome medication resistance and achieve therapeutic selectivity while having little or no effect on normal cells. The powerful bioactivity and modulatory role of quercetin has prompted extensive research into the chemical, which has identified a number of pathways that potentially work together to prevent cancer, alongside, QC has a great number of evidences to use as a therapeutic agent in cancer stem cells. This current study has broadly demonstrated the function-mechanistic relationship of quercetin and how it regulates ROS generation to kill cancer and cancer stem cells. Here, we have revealed the regulation and production of ROS in normal cells and cancer cells with a certain signaling mechanism. We demonstrated the specific molecular mechanisms of quercetin including MAPK/ERK1/2, p53, JAK/STAT and TRAIL, AMPKα1/ASK1/p38, RAGE/PI3K/AKT/mTOR axis, HMGB1 and NF-κB, Nrf2-induced signaling pathways and certain cell cycle arrest in cancer cell death, and how they regulate the specific cancer signaling pathways as long-searched cancer therapeutics.


Asunto(s)
Proteína HMGB1 , Neoplasias , Apoptosis , Proteína HMGB1/metabolismo , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Neoplasias/tratamiento farmacológico , Células Madre Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quercetina/farmacología , Quercetina/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteína p53 Supresora de Tumor
8.
J Clin Med ; 11(15)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35893363

RESUMEN

New approaches to personalized medicine are made possible by the discovery of biomarkers [...].

9.
Front Pharmacol ; 13: 901563, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873573

RESUMEN

Immune checkpoint blockage targeting PD-L1 has led to breakthroughs in cancer treatment. Although anti-PD-L1-based immunotherapy has been approved as standard therapy in various cancer types, its therapeutic efficacy in most colorectal cancers (CRC) is still limited due to the low response to immunotherapy. Therefore, combining treatment with herbal medicines could be an alternative approach for treating CRC to overcome this limitation. Bojungikki-Tang (BJIKT), a herbal formula used in traditional Chinese medicine, clinically improves the quality of life for cancer patients and has been associated with antitumor and immune-modulating activities. However, the regulatory effect of BJIKT on the immune response in the tumor microenvironment remains largely uninvestigated. In this study, we verified the inhibitory effect of BJIKT on tumor growth and investigated the regulatory effect of combination therapy with BJIKT and anti-PD-L1 on antitumor immune responses in an MC38 CRC-bearing C57BL/6 mouse model. Immune profiling analysis by flow cytometry was used to characterize the exact cell types contributing to anticancer activities. Combination treatment with BJIKT and anti-PD-L1 therapy significantly suppressed tumor growth in MC38-bearing mice and increased the proportion of cytotoxic T lymphocytes and natural killer cells in tumor tissues. Furthermore, BJIKT suppressed the population of myeloid-derived suppressor cells, suggesting that this combination treatment effectively regulates the immunological function of T-cells by improving the tumor microenvironment. The herbal formula BJIKT can be a novel therapeutic option for improving anti-PD-L1-based immunotherapy in patients with CRC.

10.
Front Pharmacol ; 12: 722730, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34616298

RESUMEN

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by complex immune dysregulation and closely related to the gut microbiome. The present study investigated the microbiome-mediated effect of Sihocheonggan-Tang (SHCGT) on AD-like symptoms induced by 2,4-dinitrochlorobenzene (DNCB) in BALB/c mice. DNCB was applied regularly to the ear and dorsal skin of BALB/c mice, and SHCGT was administered orally daily for 2 weeks. The composition of the gut microbiota was analyzed using 16S rRNA sequencing, and the effect of gut microbiome-derived metabolites, specifically short-chain fatty acids (SCFAs), was evaluated in tumor necrosis factor-alpha (TNF-α)- and interferon-gamma (IFN-γ)-treated HaCaT cells. SHCGT alleviated DNCB-induced symptoms of AD and the immune response to AD by decreasing the plasma immunoglobulin E level and splenic interleukin-4, interleukin-10, TNF-α, and IFN-γ levels. The gut microbiome composition and the damaged gut epithelial barrier in mice with AD were also significantly altered by SHCGT, and the reduced SCFA levels therein were elevated. We found that SFCAs directly inhibited the mRNA expression of IL-6 and ICAM-1 in TNF-α- and INF-γ-treated HaCaT cells. The finding that SHCGT regulates the gut microbiome and improves DNCB-induced AD in mice suggests that this herbal medicine has therapeutic potential in patients with AD.

11.
Biology (Basel) ; 9(11)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33121058

RESUMEN

Atherosclerosis is closely associated with Alzheimer's disease (AD). Tongqiaohuoxue decoction (THD) is a classical herbal prescription in traditional Chinese medicine widely used for the prevention and treatment of cerebrovascular disease. This study aimed to explore the therapeutic effects of THD on atherosclerosis and AD. Eight-week-old C57BL6/J wild-type and ApoE-deficient (ApoE-/-) mice were fed a high-fat and high-cholesterol diet for eight weeks, followed by oral phosphate-buffered saline vehicle or THD treatment for eight weeks further. In ApoE-/- mice, THD attenuated lipid deposition in the aorta and the brain, and abrogated atherosclerotic changes without affecting serum lipid profiles while decreasing amyloid plaque formation. In vitro assays undertaken to understand THD's effects on lipid clearance in the aorta and brain vessels revealed that THD treatment inhibited the lipid uptake, stimulated by oxidized low-density lipoprotein, resulted in decreased endothelial cell activation through reduction in intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and monocyte chemoattractant protein-1 levels. Serum analysis revealed inhibitory effects of THD on resistin production, which has important roles in the development of both atherosclerosis and AD. In conclusion, the current study demonstrates beneficial effects of THD on the development and progression of atherosclerosis, and a possible protective role against AD.

12.
J Clin Invest ; 129(10): 4110-4123, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31449053

RESUMEN

Microtubule-associated serine/threonine kinase 1 (MAST1) is a central driver of cisplatin resistance in human cancers. However, the molecular mechanism regulating MAST1 levels in cisplatin-resistant tumors is unknown. Through a proteomics screen, we identified the heat shock protein 90 B (hsp90B) chaperone as a direct MAST1 binding partner essential for its stabilization. Targeting hsp90B sensitized cancer cells to cisplatin predominantly through MAST1 destabilization. Mechanistically, interaction of hsp90B with MAST1 blocked ubiquitination of MAST1 at lysines 317 and 545 by the E3 ubiquitin ligase CHIP and prevented proteasomal degradation. The hsp90B-MAST1-CHIP signaling axis and its relationship with cisplatin response were clinically validated in cancer patients. Furthermore, combined treatment with a hsp90 inhibitor and the MAST1 inhibitor lestaurtinib further abrogated MAST1 activity and consequently enhanced cisplatin-induced tumor growth arrest in a patient-derived xenograft model. Our study not only uncovers the regulatory mechanism of MAST1 in tumors but also suggests a promising combinatorial therapy to overcome cisplatin resistance in human cancers.


Asunto(s)
Cisplatino/farmacología , Resistencia a Antineoplásicos/fisiología , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Células A549 , Sustitución de Aminoácidos , Animales , Sitios de Unión/genética , Línea Celular Tumoral , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Humanos , Ratones , Ratones Desnudos , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Mutagénesis Sitio-Dirigida , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Estabilidad Proteica , Ubiquitinación , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Medicine (Baltimore) ; 98(29): e16527, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31335732

RESUMEN

INTRODUCTION: Several studies have found that obesity is associated with atopic dermatitis (AD); however, the mechanisms underlying the association are largely unknown. This study aims to assess the association of AD with obesity in the Korean population and verify its mechanism via a multi-omics analysis. METHODS AND ANALYSIS: A case-control study will be conducted in the Republic of Korea. A total of 80 subjects, aged 4 to 12 years, matched for age and sex, with body mass index at or above the 85th percentile or at or below the 25th percentile, will be included. Subjects will be assigned to the following 4 groups: obese/overweight with AD, normal/underweight with AD, obese/overweight control, and normal/underweight control. Serum metabolome and immune biomarkers, as well as fecal metabolome and microbiome biomarkers, will be analyzed. Serum eosinophil cationic protein, total serum Immunoglobulin E (IgE), and specific IgE will be analyzed to assess allergic tendency. The SCORing of AD index, the children's dermatology life quality index, body composition analysis, and the Korean gastrointestinal symptom rating scale will be obtained to assess the disease status and severity of the subjects. DISCUSSION: The findings of this study are expected to provide evidence of an association between AD and obesity via a gut microbiome-metabolome-immune mechanism. Therefore, it may improve future management strategies for AD. TRIAL REGISTRATION: This study has been registered at the Korean National Clinical Trial Registry, Clinical Research Information Service (KCT0003630).


Asunto(s)
Dermatitis Atópica/complicaciones , Dermatitis Atópica/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , Biomarcadores/sangre , Índice de Masa Corporal , Estudios de Casos y Controles , Niño , Preescolar , Dermatitis Atópica/inmunología , Dermatitis Atópica/microbiología , Proteína Catiónica del Eosinófilo/sangre , Heces/química , Heces/microbiología , Femenino , Microbioma Gastrointestinal , Humanos , Inmunoglobulina E/sangre , Masculino , Metaboloma , Obesidad/inmunología , Obesidad/microbiología , Calidad de Vida , República de Corea
14.
Biomolecules ; 9(5)2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-31058868

RESUMEN

Aberrant activation of signal transducer and activator of transcription 3 (STAT3) has been documented in various malignancies including triple-negative breast cancers (TNBCs). The STAT3 transcription factor can regulate the different important hallmarks of tumor cells, and thus, targeting it can be a potential strategy for treating TNBC, for which only limited therapeutic options are available. In this study, we analyzed the possible effect of (-)-galiellalactone and its novel analogues, SG-1709 and SG-1721, and determined whether these agents exerted their antineoplastic effects by suppressing the STAT3 signaling pathway in TNBC cells. The two analogues, SG-1709 and SG-1721, inhibited both constitutive as well as inducible STAT3 phosphorylation at tyrosine 705 more effectively than (-)-galiellalactone, which indicates that the analogues are more potent STAT3 blockers. Moreover, SG-1721 not only inhibited nuclear translocation and DNA binding of STAT3 but also induced apoptosis, and decreased expression of diverse oncogenic proteins. Interestingly, SG-1721 also exhibited an enhanced apoptotic effect when combined with radiotherapy. Furthermore, in vivo administration of SG-1721 significantly attenuated breast xenograft tumor growth via decreasing levels of p-STAT3. Therefore, SG-1721 may be a promising candidate for further application as a pharmacological agent that can target STAT3 protein in treating TNBC.


Asunto(s)
Apoptosis/efectos de los fármacos , Lactonas/farmacología , Factor de Transcripción STAT3/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Animales , Biomarcadores de Tumor/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Quinasas Janus/metabolismo , Lactonas/química , Ratones Desnudos , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/radioterapia
15.
J Clin Invest ; 129(6): 2431-2445, 2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-31081803

RESUMEN

How altered metabolism contributes to chemotherapy resistance in cancer cells remains unclear. Through a metabolism-related kinome RNAi screen, we identified inositol-trisphosphate 3-kinase B (ITPKB) as a critical enzyme that contributes to cisplatin-resistant tumor growth. We demonstrated that inositol 1,3,4,5-tetrakisphosphate (IP4), the product of ITPKB, plays a critical role in redox homeostasis upon cisplatin exposure by reducing cisplatin-induced ROS through inhibition of a ROS-generating enzyme, NADPH oxidase 4 (NOX4), which promotes cisplatin-resistant tumor growth. Mechanistically, we identified that IP4 competes with the NOX4 cofactor NADPH for binding and consequently inhibits NOX4. Targeting ITPKB with shRNA or its small-molecule inhibitor resulted in attenuation of NOX4 activity, imbalanced redox status, and sensitized cancer cells to cisplatin treatment in patient-derived xenografts. Our findings provide insight into the crosstalk between kinase-mediated metabolic regulation and platinum-based chemotherapy resistance in human cancers. Our study also suggests a distinctive signaling function of IP4 that regulates NOX4. Furthermore, pharmaceutical inhibition of ITPKB displayed synergistic attenuation of tumor growth with cisplatin, suggesting ITPKB as a promising synthetic lethal target for cancer therapeutic intervention to overcome cisplatin resistance.


Asunto(s)
Cisplatino/farmacología , Resistencia a Antineoplásicos , NADPH Oxidasa 4/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Transducción de Señal , Células A549 , Animales , Femenino , Humanos , Ratones , Ratones Desnudos , NADPH Oxidasa 4/genética , Proteínas de Neoplasias/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Oxidación-Reducción/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Ensayos Antitumor por Modelo de Xenoinjerto
16.
J Biochem Mol Toxicol ; 33(5): e22297, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30672058

RESUMEN

Igalan is one of the sesquiterpene lactones found in Inula helenium L., which is used as the traditional medicine to treat inflammatory diseases. However, the pharmacological effects of igalan have not been characterized. In this study, we isolated igalan from I. helenium L. and evaluated the effects of igalan on signaling pathways and expression of target genes in HepG2 cells. Igalan activated the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway by increasing the inactive form of GSK3ß, the phosphorylated form of AKT, and the nuclear accumulation of Nrf2. Thus, target genes of Nrf2 such as HO-1 and NQO1 increased in HepG2 cells. Moreover, igalan inhibited the tumor necrosis factor-α (TNF-α)-induced nuclear factor-κB activation and suppressed the expression of its target genes, including TNF-α, interleukin (IL)-6, and IL-8 in HepG2 cells. Our results indicate the potential of igalan as an activator of cellular defense mechanisms and a detoxifying agent.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/biosíntesis , Hemo-Oxigenasa 1/biosíntesis , Inula/química , Factor 2 Relacionado con NF-E2/metabolismo , Sesquiterpenos/farmacología , Citocinas/metabolismo , Células Hep G2 , Humanos , Inactivación Metabólica/efectos de los fármacos , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Transducción de Señal
17.
Phytother Res ; 32(12): 2501-2509, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30251272

RESUMEN

Inula helenium L., commonly known as Elecampane, has been extensively used for many countries in the folk medicine. Its root is a rich source of sesquiterpene lactones, which possess various pharmacological activities. To develop the phytomedicine including sesquiterpene lactones, we prepared hexane fraction from I. helenium (HFIH) and examined the inhibitory effect of HFIH on signal transducers and activators of transcription 3 (STAT3) activation in human breast cancer MDA-MB-231 cells. Additionally, detailed chemical investigation was done to pinpoint the most active sesquiterpene lactones responsible for its anticancer activity. HFIH selectively suppressed STAT3 phosphorylation at tyrosine 705, not affecting its upstream kinases. HFIH downregulated the expression of STAT3 target genes including cyclin D1 , c-myc, and bcl-2 and induced caspase-mediated apoptosis. Moreover, sesquiterpene lactones of HFIH clearly suppressed STAT3 activation. The in vivo results further supported that HFIH inhibits the growth of human breast xenograft tumors. Our results suggest that HFIH possesses potential anticancer activity, which is mainly mediated through STAT3 signaling pathway. These findings provide the potential of HFIH as a promising phytomedicine for the treatment and prevention of triple-negative breast cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Inula/química , Lactonas/farmacología , Sesquiterpenos/farmacología , Animales , Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/metabolismo , Caspasas/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Lactonas/aislamiento & purificación , Células MCF-7 , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Factor de Transcripción STAT3/metabolismo , Sesquiterpenos/aislamiento & purificación , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
18.
J Nat Med ; 72(4): 937-945, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30043217

RESUMEN

Cantharidin is an active constituent of blister beetles (cantharides) which have traditionally been used for cancer treatment. Several studies have shown that cantharidin has a cytotoxic effect on various cancer cells. However, few studies have examined the effect of cantharidin on signal transducer and activator of transcription 3 (STAT3) signaling in cancer. In this study, we isolated cantharidin from cantharides by bioassay-guided fractionation and examined its inhibitory effect on STAT3 activation in human breast cancer MDA-MB-231 cells, expressing high level of phosphorylated STAT3. Cantharides were extracted with acetonitrile and separated into hexane, methylene chloride/acetonitrile, and water fractions. The methylene chloride/acetonitrile fraction was further separated into four fractions by preparative high-throughput high-performance liquid chromatography. Cantharidin was then isolated from the third fraction by countercurrent chromatography and structurally determined by comparing nuclear magnetic resonance and high-resolution mass spectrometry data. Cantharidin inhibited STAT3 tyrosine phosphorylation in MDA-MB-231 cells. Cantharidin suppressed epidermal growth factor (EGF)-induced STAT3 and PI3K/Akt signaling pathways through inhibition of EGF receptor phosphorylation. Moreover, cantharidin reduced cell proliferation and induced apoptosis with downregulation of STAT3 target genes, such as Bcl-2, COX-2, and cyclin D1. Taken together, this study provides evidence that cantharidin may be a potential therapeutic agent for triple-negative breast cancer by reducing EGFR-mediated STAT3 and Akt signaling pathways.


Asunto(s)
Cantaridina/química , Receptores ErbB/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Antineoplásicos , Escarabajos , Humanos , Transducción de Señal
19.
Cancer Cell ; 34(2): 315-330.e7, 2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-30033091

RESUMEN

Platinum-based chemotherapeutics represent a mainstay of cancer therapy, but resistance limits their curative potential. Through a kinome RNAi screen, we identified microtubule-associated serine/threonine kinase 1 (MAST1) as a main driver of cisplatin resistance in human cancers. Mechanistically, cisplatin but no other DNA-damaging agents inhibit the MAPK pathway by dissociating cRaf from MEK1, while MAST1 replaces cRaf to reactivate the MAPK pathway in a cRaf-independent manner. We show clinical evidence that expression of MAST1, both initial and cisplatin-induced, contributes to platinum resistance and worse clinical outcome. Targeting MAST1 with lestaurtinib, a recently identified MAST1 inhibitor, restores cisplatin sensitivity, leading to the synergistic attenuation of cancer cell proliferation and tumor growth in human cancer cells and patient-derived xenograft models.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , MAP Quinasa Quinasa 1/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas c-raf/fisiología , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos , Activación Enzimática , Femenino , Humanos , Ratones
20.
Mol Cell ; 69(1): 87-99.e7, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29249655

RESUMEN

Loss of LKB1 is associated with increased metastasis and poor prognosis in lung cancer, but the development of targeted agents is in its infancy. Here we report that a glutaminolytic enzyme, glutamate dehydrogenase 1 (GDH1), upregulated upon detachment via pleomorphic adenoma gene 1 (PLAG1), provides anti-anoikis and pro-metastatic signals in LKB1-deficient lung cancer. Mechanistically, the GDH1 product α-KG activates CamKK2 by enhancing its substrate AMPK binding, which contributes to energy production that confers anoikis resistance. The effect of GDH1 on AMPK is evident in LKB1-deficient lung cancer, where AMPK activation predominantly depends on CamKK2. Targeting GDH1 with R162 attenuated tumor metastasis in patient-derived xenograft model and correlation studies in lung cancer patients further validated the clinical relevance of our finding. Our study provides insight into the molecular mechanism by which GDH1-mediated metabolic reprogramming of glutaminolysis mediates lung cancer metastasis and offers a therapeutic strategy for patients with LKB1-deficient lung cancer.


Asunto(s)
Anoicis/fisiología , Proteínas de Unión al ADN/metabolismo , Glutamato Deshidrogenasa/metabolismo , Neoplasias Pulmonares/patología , Proteínas Serina-Treonina Quinasas/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Células A549 , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Línea Celular Tumoral , Activación Enzimática/fisiología , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Metástasis de la Neoplasia/patología , Trasplante de Neoplasias , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...