Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Carbohydr Res ; 534: 108943, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37783054

RESUMEN

The production of biofuels from lignocellulosic biomass using carbohydrate-active enzymes like cellulases is key to a sustainable energy production. Understanding the adsorption mechanism of cellulases and associated binding domain proteins down to the molecular level details will help in the rational design of improved cellulases. In nature, carbohydrate-binding modules (CBMs) from families 17 and 28 often appear in tandem appended to the C-terminus of several endocellulases. Both CBMs are known to bind to the amorphous regions of cellulose non-competitively and show similar binding affinity towards soluble cello-oligosaccharides. Based on the available crystal structures, these CBMs may display a uni-directional binding preference towards cello-oligosaccharides (based on how the oligosaccharide was bound within the CBM binding cleft). However, molecular dynamics (MD) simulations have indicated no such clear preference. Considering that most soluble oligosaccharides are not always an ideal substrate surrogate to study the binding of CBMs to the native cell wall or cell surface displayed glycans, it is critical to use alternative reagents or substrates. To better understand the binding of type B CBMs towards smaller cello-oligosaccharides, we have developed a simple solid-state depletion or pull-down binding assay. Here, we specifically orient azido-labeled carbohydrates from the reducing end to alkyne-labeled micron-sized bead surfaces, using click chemistry, to mimic insoluble cell wall surface-displayed glycans. Our results reveal that both family 17 and 28 CBMs displayed a similar binding affinity towards cellohexaose-modified beads, but not cellopentaose-modified beads, which helps rationalize previously reported crystal structure and MD data. This may indicate a preferred uni-directional binding of specific CBMs and could explain their co-evolution as tandem constructs appended to endocellulases to increase amorphous cellulose substrate targeting efficiency. Overall, our proposed workflow can be easily translated to measure the affinity of glycan-binding proteins to click-chemistry based immobilized surface-displayed carbohydrates or antigens.


Asunto(s)
Proteínas Portadoras , Celulasas , Humanos , Proteínas Portadoras/metabolismo , Unión Proteica , Polisacáridos , Oligosacáridos/química , Carbohidratos/química , Celulosa/química , Celulasas/metabolismo , Sitios de Unión
2.
bioRxiv ; 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37745483

RESUMEN

Lignocellulosic biomass recalcitrance to enzymatic degradation necessitates high enzyme loadings incurring large processing costs for industrial-scale biofuels or biochemicals production. Manipulating surface charge interactions to minimize non-productive interactions between cellulolytic enzymes and plant cell wall components (e.g., lignin or cellulose) via protein supercharging has been hypothesized to improve biomass biodegradability, but with limited demonstrated success to date. Here we characterize the effect of introducing non-natural enzyme surface mutations and net charge on cellulosic biomass hydrolysis activity by designing a library of supercharged family-5 endoglucanase Cel5A and its native family-2a carbohydrate binding module (CBM) originally belonging to an industrially relevant thermophilic microbe Thermobifida fusca . A combinatorial library of 33 mutant constructs containing different CBM and Cel5A designs spanning a net charge range of -52 to 37 was computationally designed using Rosetta macromolecular modelling software. Activity for all mutants was rapidly characterized as soluble cell lysates and promising mutants (containing mutations either on the CBM, Cel5A catalytic domain, or both CBM and Cel5A domains) were then purified and systematically characterized. Surprisingly, often endocellulases with mutations on the CBM domain alone resulted in improved activity on cellulosic biomass, with three top-performing supercharged CBM mutants exhibiting between 2-5-fold increase in activity, compared to native enzyme, on both pretreated biomass enriched in lignin (i.e., corn stover) and isolated crystalline/amorphous cellulose. Furthermore, we were able to clearly demonstrate that endocellulase net charge can be selectively fine-tuned using protein supercharging protocol for targeting distinct substrates and maximizing biocatalytic activity. Additionally, several supercharged CBM containing endocellulases exhibited a 5-10 °C increase in optimal hydrolysis temperature, compared to native enzyme, which enabled further increase in hydrolytic yield at higher operational reaction temperatures. This study demonstrates the first successful implementation of enzyme supercharging of cellulolytic enzymes to increase hydrolytic activity towards complex lignocellulosic biomass derived substrates.

3.
Biotechnol Bioeng ; 120(8): 2253-2268, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37386894

RESUMEN

Carbohydrate binding modules (CBMs) are noncatalytic domains that assist tethered catalytic domains in substrate targeting. CBMs have therefore been used to visualize distinct polysaccharides present in the cell wall of plant cells and tissues. However, most previous studies provide a qualitative analysis of CBM-polysaccharide interactions, with limited characterization of engineered tandem CBM designs for recognizing polysaccharides like cellulose and limited application of CBM-based probes to visualize cellulose fibrils synthesis in model plant protoplasts with regenerating cell walls. Here, we examine the dynamic interactions of engineered type-A CBMs from families 3a and 64 with crystalline cellulose-I and phosphoric acid swollen cellulose. We generated tandem CBM designs to determine various characteristic properties including binding reversibility toward cellulose-I using equilibrium binding assays. To compute the adsorption (nkon ) and desorption (koff ) rate constants of single versus tandem CBM designs toward nanocrystalline cellulose, we employed dynamic kinetic binding assays using quartz crystal microbalance with dissipation. Our results indicate that tandem CBM3a exhibited the highest adsorption rate to cellulose and displayed reversible binding to both crystalline/amorphous cellulose, unlike other CBM designs, making tandem CBM3a better suited for live plant cell wall biosynthesis imaging applications. We used several engineered CBMs to visualize Arabidopsis thaliana protoplasts with regenerated cell walls using confocal laser scanning microscopy and wide-field fluorescence microscopy. Lastly, we also demonstrated how CBMs as probe reagents can enable in situ visualization of cellulose fibrils during cell wall regeneration in Arabidopsis protoplasts.


Asunto(s)
Celulosa , Protoplastos , Humanos , Protoplastos/metabolismo , Celulosa/metabolismo , Polisacáridos/metabolismo , Plantas/química , Metabolismo de los Hidratos de Carbono
4.
Protein Expr Purif ; 210: 106309, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37211149

RESUMEN

Cellulose is synthesized by a plant cell membrane-integrated processive glycosyltransferase (GT) called cellulose synthase (CesA). Since only a few of these plant CesAs have been purified and characterized to date, there are huge gaps in our mechanistic understanding of these enzymes. The biochemistry and structural biology studies of CesAs are currently hampered by challenges associated with their expression and extraction at high yields. To aid in understanding CesA reaction mechanisms and to provide a more efficient CesA extraction method, two putative plant CesAs - PpCesA5 from Physcomitrella patens and PttCesA8 from Populus tremula x tremuloides that are involved in primary and secondary cell wall formation in plants were expressed using Pichia pastoris as an expression host. We developed a protoplast-based membrane protein extraction approach to directly isolate these membrane-bound enzymes, as confirmed by immunoblotting and mass spectrometry-based analyses. Our method gives 3-4-fold higher purified protein yield than the standard cell homogenization protocol. Our method resulted in liposome reconstituted CesA5 and CesA8 enzymes with similar Michaelis-Menten kinetic constants, Km = 167 µM, 108 µM and Vmax = 7.88 × 10-5 µmol/min, 4.31 × 10-5 µmol/min, respectively, in concurrence with the previous studies for enzymes isolated using the standard protocol. Taken together, these results suggest that CesAs involved in primary and secondary cell wall formation can be expressed and purified using a simple and more efficient extraction method. This protocol could help isolate enzymes that unravel the mechanism of native and engineered cellulose synthase complexes involved in plant cell wall biosynthesis.


Asunto(s)
Proteínas de la Membrana , Proteínas de Plantas , Proteínas de Plantas/química , Liposomas , Protoplastos/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/química , Pared Celular/genética , Pared Celular/metabolismo
5.
Methods Enzymol ; 682: 211-245, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36948703

RESUMEN

Glycosynthases are mutant glycosyl hydrolases that can synthesize glycosidic bonds between acceptor glycone/aglycone groups and activated donor sugars with suitable leaving groups (e.g., azido, fluoro). However, it has been challenging to rapidly detect glycosynthase reaction products involving azido sugars as donor sugars. This has limited our ability to apply rational engineering and directed evolution methods to rapidly screen for improved glycosynthases that are capable of synthesizing bespoke glycans. Here, we outline our recently developed screening methodologies for rapidly detecting glycosynthase activity using a model fucosynthase enzyme engineered to be active on fucosyl azide as donor sugar. We created a diverse library of fucosynthase mutants using semi-random and random error prone mutagenesis and then identified improved fucosynthase mutants with desired activity using two distinct screening methods developed by our group to detect glycosynthase activity (i.e., by detecting azide formed upon completion of fucosynthase reaction); (a) pCyn-GFP regulon method, and (b) Click chemistry method. Finally, we provide some proof-of-concept results illustrating the utility of both these screening methods to rapidly detect products of glycosynthase reactions involving azido sugars as donor groups.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Azúcares , Azidas , Hidrolasas , Oligosacáridos
6.
J Pharm Sci ; 112(6): 1485-1491, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36682489

RESUMEN

N-glycosylation is a post-translational modification that occurs during the production of monoclonal antibody (mAb) therapeutics. During production of mAb based therapeutics the use of various hosts and cell culture additives attribute to glycan heterogeneity. The safety and efficacy of monoclonal antibodies with mechanism of actions that utilize Fc effector functions can be negatively impacted by glycan heterogeneity and thus is often considered a critical quality attribute (CQA). In this mini review, we discuss recent advances in mAb sample preparation specifically focused on denaturation, enzymatic processing, and released glycans derivatization methods. Additionally, we review the recent advances in characterization of released and intact N-glycans using chromatography, capillary electrophoresis, and mass spectrometry techniques with a focus on rapid, automated approaches that support analysis of glycosylation profiles of biopharmaceuticals. We delve into advances within sample preparation techniques that allow for rapid and robust sample preparation as well as how these techniques are being used for innovative at-line high-throughput screening and process analytical technology (PAT). The future of biomanufacturing is focused on decreasing process costs while increasing process understanding and quality for novel biologic candidates and biosimilars. Therefore, advances in PAT for biotherapeutics will positively influence current manufacturing practices and enable further bioprocess automation.


Asunto(s)
Biosimilares Farmacéuticos , Polisacáridos/química , Anticuerpos Monoclonales/química , Automatización , Glicosilación
7.
Proc Natl Acad Sci U S A ; 119(42): e2117467119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215467

RESUMEN

Protein adsorption to solid carbohydrate interfaces is critical to many biological processes, particularly in biomass deconstruction. To engineer more-efficient enzymes for biomass deconstruction into sugars, it is necessary to characterize the complex protein-carbohydrate interfacial interactions. A carbohydrate-binding module (CBM) is often associated with microbial surface-tethered cellulosomes or secreted cellulase enzymes to enhance substrate accessibility. However, it is not well known how CBMs recognize, bind, and dissociate from polysaccharides to facilitate efficient cellulolytic activity, due to the lack of mechanistic understanding and a suitable toolkit to study CBM-substrate interactions. Our work outlines a general approach to study the unbinding behavior of CBMs from polysaccharide surfaces using a highly multiplexed single-molecule force spectroscopy assay. Here, we apply acoustic force spectroscopy (AFS) to probe a Clostridium thermocellum cellulosomal scaffoldin protein (CBM3a) and measure its dissociation from nanocellulose surfaces at physiologically relevant, low force loading rates. An automated microfluidic setup and method for uniform deposition of insoluble polysaccharides on the AFS chip surfaces are demonstrated. The rupture forces of wild-type CBM3a, and its Y67A mutant, unbinding from nanocellulose surfaces suggests distinct multimodal CBM binding conformations, with structural mechanisms further explored using molecular dynamics simulations. Applying classical dynamic force spectroscopy theory, the single-molecule unbinding rate at zero force is extrapolated and found to agree with bulk equilibrium unbinding rates estimated independently using quartz crystal microbalance with dissipation monitoring. However, our results also highlight critical limitations of applying classical theory to explain the highly multivalent binding interactions for cellulose-CBM bond rupture forces exceeding 15 pN.


Asunto(s)
Celulasa , Clostridium thermocellum , Acústica , Proteínas Bacterianas/metabolismo , Carbohidratos/química , Celulasa/metabolismo , Celulosa/metabolismo , Clostridium thermocellum/metabolismo , Análisis Espectral , Azúcares
8.
Anal Chem ; 94(19): 6986-6995, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35385654

RESUMEN

The biopharmaceutical industry is transitioning toward the adoption of continuous biomanufacturing practices that are often more flexible and efficient than traditional batch processes. Federal regulatory agencies are further urging the use of advanced process analytical technology (PAT) to analyze the design space to increase the process knowledge and enable high-quality biologic production. Post-translational modifications of proteins, such as N-linked glycosylation, are often critical quality attributes that affect biologics' safety and efficacy, requiring close monitoring during manufacturing. Here, we developed an online sequential-injection-based PAT system, called N-GLYcanyzer, which can rapidly monitor mAb glycosylation during upstream biomanufacturing. The key innovation includes the design of an integrated mAb sampling and fully automated sample derivation system for antibody titer and glycoform analysis within 3 h. The N-GLYcanyzer process includes mAb capture, deglycosylation, released glycan labeling with fluorescent dyes, and labeled glycan enrichment for direct injection/analysis on an integrated high-performance liquid chromatography system. Different fluorescent tags and reductants were tested to maximize glycan labeling efficiency under aqueous conditions, while porous graphitized carbon (PGC) was used for optimizing glycan recovery and enrichment. We found that 2-aminobenzamide labeling of glycans with 2-picoline borane as a reducing agent, using the N-GLYcanyzer workflow, shows higher glycan labeling efficiency under aqueous conditions, leading upward to a 5-fold increase in fluorescent product intensity. Finally, we showcase how the N-GLYcanyzer platform can be implemented at-/online in an upstream bioreactor for automated and near-real-time glycosylation monitoring of a Trastuzumab biosimilar produced by Chinese hamster ovary cells.


Asunto(s)
Anticuerpos Monoclonales , Polisacáridos , Animales , Anticuerpos Monoclonales/química , Células CHO , Cricetinae , Cricetulus , Glicosilación , Polisacáridos/análisis
9.
ACS Chem Biol ; 16(11): 2490-2501, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34499469

RESUMEN

Engineering of carbohydrate-active enzymes such as glycosynthases to enable chemoenzymatic synthesis of bespoke oligosaccharides has been limited by the lack of suitable ultrahigh-throughput screening methods capable of robustly detecting either starting substrates or end-products of the glycosidic bond formation reaction. Currently, there are limited screening methods available for rapid and highly sensitive single-cell-based screening of glycosynthase enzymes employing azido sugars as activated donor glycosyl substrates. Here, we report a fluorescence-based approach employing click-chemistry for the selective detection of glycosyl azides as substrates versus free inorganic azides as reaction products that facilitated an ultrahigh-throughput in vivo single-cell-based assay of glycosynthase activity. This assay was developed based on the distinct differences observed in relative fluorescence intensity of the triazole-containing fluorophore product formed during the click-chemistry reaction of organic glycosyl azides versus inorganic azides. This discovery formed the basis for proof of concept validation of a directed evolution methodology for screening and sorting glycosynthase mutants capable of synthesis of targeted fucosylated oligosaccharides. Our screening approach facilitated fluorescence-activated cell sorting of an error-prone polymerase chain reaction-based mutant library of fucosynthases expressed in Escherichia coli to identify several novel mutants that showed increased activity for ß-fucosyl azide-activated donor sugars toward desired acceptor sugars (e.g., pNP-xylose and lactose). Finally, we discuss avenues for improving this proof of concept in vivo assay method to identify better glycosynthase mutants and further demonstrate the broader applicability of this screening methodology for synthesis of bespoke glycans.


Asunto(s)
Azidas/química , Química Clic , Glicósidos/metabolismo , Ligasas/metabolismo , Azúcares/química , Glicosilación , Especificidad por Sustrato
10.
ACS Synth Biol ; 10(4): 682-689, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33749248

RESUMEN

Detection of azide-tagged biomolecules (e.g., azido sugars) inside living cells using "click" chemistry has been revolutionary to the field of chemical biology. However, we currently still lack suitable synthetic biology tools to autonomously and rapidly detect azide ions. Here, we have developed an engineered synthetic promoter system called cyn regulon, and complementary Escherichia coli engineered strains, to selectively detect azide ions and autonomously induce downstream expression of reporter genes. The engineered cyn azide operon allowed highly tunable reporter green fluorescent protein (GFP) expression over three orders of inducer azide ion concentrations (0.01-5 mM) and rapidly induced GFP expression by over 600-fold compared to the uninduced control. Next, we showcase the superior performance of this engineered cyn-operon over the classical lac-operon for recombinant protein production. Finally, we highlight how this synthetic biology toolkit can enable glycoengineering-based applications by facilitating in vivo activity screening of mutant carbohydrate-active enzymes (CAZymes), called glycosynthases, using azido sugars as donor substrates.


Asunto(s)
Azidas/metabolismo , Bioingeniería/métodos , Proteínas Recombinantes/metabolismo , Regulón/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas Recombinantes/genética
11.
J Biol Chem ; 296: 100431, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33610545

RESUMEN

Efficient enzymatic saccharification of cellulosic biomass into fermentable sugars can enable production of bioproducts like ethanol. Native crystalline cellulose, or cellulose I, is inefficiently processed via enzymatic hydrolysis but can be converted into the structurally distinct cellulose III allomorph that is processed via cellulase cocktails derived from Trichoderma reesei up to 20-fold faster. However, characterization of individual cellulases from T. reesei, like the processive exocellulase Cel7A, shows reduced binding and activity at low enzyme loadings toward cellulose III. To clarify this discrepancy, we monitored the single-molecule initial binding commitment and subsequent processive motility of Cel7A enzymes and associated carbohydrate-binding modules (CBMs) on cellulose using optical tweezers force spectroscopy. We confirmed a 48% lower initial binding commitment and 32% slower processive motility of Cel7A on cellulose III, which we hypothesized derives from reduced binding affinity of the Cel7A binding domain CBM1. Classical CBM-cellulose pull-down assays, depending on the adsorption model fitted, predicted between 1.2- and 7-fold reduction in CBM1 binding affinity for cellulose III. Force spectroscopy measurements of CBM1-cellulose interactions, along with molecular dynamics simulations, indicated that previous interpretations of classical binding assay results using multisite adsorption models may have complicated analysis, and instead suggest simpler single-site models should be used. These findings were corroborated by binding analysis of other type-A CBMs (CBM2a, CBM3a, CBM5, CBM10, and CBM64) on both cellulose allomorphs. Finally, we discuss how complementary analytical tools are critical to gain insight into the complex mechanisms of insoluble polysaccharides hydrolysis by cellulolytic enzymes and associated carbohydrate-binding proteins.


Asunto(s)
Celulasas/metabolismo , Celulosa/metabolismo , Hypocreales/enzimología , Adsorción , Proteínas Portadoras/metabolismo , Dominio Catalítico , Celulasa/química , Celulasas/química , Celulosa 1,4-beta-Celobiosidasa/química , Hidrólisis , Hypocreales/metabolismo , Simulación de Dinámica Molecular , Unión Proteica , Trichoderma/enzimología
12.
Biotechnol Bioeng ; 118(3): 1141-1151, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33245142

RESUMEN

Dissociation of nonproductively bound cellulolytic enzymes from cellulose is hypothesized to be a key rate-limiting factor impeding cost-effective biomass conversion to fermentable sugars. However, the role of carbohydrate-binding modules (CBMs) in enabling nonproductive enzyme binding is not well understood. Here, we examine the subtle interplay of CBM binding and cellulose hydrolysis activity for three models type-A CBMs (Families 1, 3a, and 64) tethered to multifunctional endoglucanase (CelE) on two distinct cellulose allomorphs (i.e., cellulose I and III). We generated a small library of mutant CBMs with varying cellulose affinity, as determined by equilibrium binding assays, followed by monitoring cellulose hydrolysis activity of CelE-CBM fusion constructs. Finally, kinetic binding assays using quartz crystal microbalance with dissipation were employed to measure CBM adsorption and desorption rate constants kon and koff , respectively, towards nanocrystalline cellulose derived from both allomorphs. Overall, our results indicate that reduced CBM equilibrium binding affinity towards cellulose I alone, resulting from increased desorption rates ( koff ) and reduced effective adsorption rates ( nkon ), is correlated to overall improved endocellulase activity. Future studies could employ similar approaches to unravel the role of CBMs in nonproductive enzyme binding and develop improved cellulolytic enzymes for industrial applications.


Asunto(s)
Celulasas/química , Celulosa/química , Hidrólisis , Unión Proteica
13.
Biotechnol Bioeng ; 117(10): 2944-2956, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32573768

RESUMEN

Chemoenzymatic approaches using carbohydrate-active enzymes (CAZymes) offer a promising avenue for the synthesis of glycans like oligosaccharides. Here, we report a novel chemoenzymatic route for cellodextrins synthesis employed by chimeric CAZymes, akin to native glycosyltransferases, involving the unprecedented participation of a "non-catalytic" lectin-like domain or carbohydrate-binding modules (CBMs) in the catalytic step for glycosidic bond synthesis using ß-cellobiosyl donor sugars as activated substrates. CBMs are often thought to play a passive substrate targeting role in enzymatic glycosylation reactions mostly via overcoming substrate diffusion limitations for tethered catalytic domains (CDs) but are not known to participate directly in any nucleophilic substitution mechanisms that impact the actual glycosyl transfer step. This study provides evidence for the direct participation of CBMs in the catalytic reaction step for ß-glucan glycosidic bonds synthesis enhancing activity for CBM-based CAZyme chimeras by >140-fold over CDs alone. Dynamic intradomain interactions that facilitate this poorly understood reaction mechanism were further revealed by small-angle X-ray scattering structural analysis along with detailed mutagenesis studies to shed light on our current limited understanding of similar transglycosylation-type reaction mechanisms. In summary, our study provides a novel strategy for engineering similar CBM-based CAZyme chimeras for the synthesis of bespoke oligosaccharides using simple activated sugar monomers.


Asunto(s)
Proteínas Bacterianas/metabolismo , Celulasa/metabolismo , Clostridium thermocellum/enzimología , Oligosacáridos/metabolismo , Polisacáridos/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Dominio Catalítico , Celulasa/química , Cristalografía por Rayos X , Glicosilación , Modelos Moleculares , Oligosacáridos/química , Polisacáridos/química , Conformación Proteica , Especificidad por Sustrato
14.
J Vis Exp ; (158)2020 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-32364543

RESUMEN

Lignocellulosic materials are plant-derived feedstocks, such as crop residues (e.g., corn stover, rice straw, and sugar cane bagasse) and purpose-grown energy crops (e.g., miscanthus, and switchgrass) that are available in large quantities to produce biofuels, biochemicals, and animal feed. Plant polysaccharides (i.e., cellulose, hemicellulose, and pectin) embedded within cell walls are highly recalcitrant towards conversion into useful products. Ammonia fiber expansion (AFEX) is a thermochemical pretreatment that increases accessibility of polysaccharides to enzymes for hydrolysis into fermentable sugars. These released sugars can be converted into fuels and chemicals in a biorefinery. Here, we describe a laboratory-scale batch AFEX process to produce pretreated biomass on the gram-scale without any ammonia recycling. The laboratory-scale process can be used to identify optimal pretreatment conditions (e.g., ammonia loading, water loading, biomass loading, temperature, pressure, residence time, etc.) and generates sufficient quantities of pretreated samples for detailed physicochemical characterization and enzymatic/microbial analysis. The yield of fermentable sugars from enzymatic hydrolysis of corn stover pretreated using the laboratory-scale AFEX process is comparable to pilot-scale AFEX process under similar pretreatment conditions. This paper is intended to provide a detailed standard operating procedure for the safe and consistent operation of laboratory-scale reactors for performing AFEX pretreatment of lignocellulosic biomass.


Asunto(s)
Amoníaco/farmacología , Biomasa , Lignina/metabolismo , Biocombustibles , Reactores Biológicos , Glucosa/análisis , Poaceae , Temperatura , Xilosa/análisis
15.
Bioresour Technol ; 298: 122446, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31791921

RESUMEN

Ammonia-based pretreatments have been extensively studied in the last decade as one of the leading pretreatment technologies for lignocellulose biorefining. Here, we discuss the key features and compare performances of several leading ammonia-based pretreatments (e.g., soaking in aqueous ammonia or SAA, ammonia recycled percolation or ARP, ammonia fiber expansion or AFEX, and extractive ammonia or EA). We provide detailed insight into the distinct physicochemical mechanisms employed during ammonia-based pretreatments and its impact on downstream bioprocesses (e.g., enzymatic saccharification); such as modification of cellulose crystallinity, lignin/hemicellulose structure, and other ultrastructural changes such as cell wall porosity. Lastly, a brief overview of process technoeconomics and environmental impacts are discussed, along with recommendations for future areas of research on ammonia-based pretreatments.


Asunto(s)
Amoníaco , Lignina , Biomasa , Celulosa , Hidrólisis
16.
Biotechnol Bioeng ; 114(4): 740-750, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27748522

RESUMEN

Biological-mediated conversion of pretreated lignocellulosic biomass to biofuels and biochemicals is a promising avenue toward energy sustainability. However, a critical impediment to the commercialization of cellulosic biofuel production is the high cost of cellulase enzymes needed to deconstruct biomass into fermentable sugars. One major factor driving cost is cellulase adsorption and inactivation in the presence of lignin, yet we currently have a poor understanding of the protein structure-function relationships driving this adsorption. In this work, we have systematically investigated the role of protein surface potential on lignin adsorption using a model monomeric fluorescent protein. We have designed and experimentally characterized 16 model protein variants spanning the physiological range of net charge (-24 to +16 total charges) and total charge density (0.28-0.40 charges per sequence length) typical for natural proteins. Protein designs were expressed, purified, and subjected to in silico and in vitro biophysical measurements to evaluate the relationship between protein surface potential and lignin adsorption properties. The designs were comparable to model fluorescent protein in terms of thermostability and heterologous expression yield, although the majority of the designs unexpectedly formed homodimers. Protein adsorption to lignin was studied at two different temperatures using Quartz Crystal Microbalance with Dissipation Monitoring and a subtractive mass balance assay. We found a weak correlation between protein net charge and protein-binding capacity to lignin. No other single characteristic, including apparent melting temperature and 2nd virial coefficient, showed correlation with lignin binding. Analysis of an unrelated cellulase dataset with mutations localized to a family I carbohydrate-binding module showed a similar correlation between net charge and lignin binding capacity. Overall, our study provides strategies to identify highly active, low lignin-binding cellulases by either rational design or by computational screening genomic databases. Biotechnol. Bioeng. 2017;114: 740-750. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Celulasa/química , Celulasa/metabolismo , Proteínas Fluorescentes Verdes/química , Lignina/metabolismo , Ingeniería de Proteínas/métodos , Biomasa , Celulasa/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Lignina/química , Mutación , Unión Proteica , Conformación Proteica , Propiedades de Superficie
17.
Nat Commun ; 6: 10149, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26657780

RESUMEN

Cellobiohydrolase 1 from Trichoderma reesei (TrCel7A) processively hydrolyses cellulose into cellobiose. Although enzymatic techniques have been established as promising tools in biofuel production, a clear understanding of the motor's mechanistic action has yet to be revealed. Here, we develop an optical tweezers-based single-molecule (SM) motility assay for precision tracking of TrCel7A. Direct observation of motility during degradation reveals processive runs and distinct steps on the scale of 1 nm. Our studies suggest TrCel7A is not mechanically limited, can work against 20 pN loads and speeds up when assisted. Temperature-dependent kinetic studies establish the energy requirements for the fundamental stepping cycle, which likely includes energy from glycosidic bonds and other sources. Through SM measurements of isolated TrCel7A domains, we determine that the catalytic domain alone is sufficient for processive motion, providing insight into TrCel7A's molecular motility mechanism.


Asunto(s)
Celulosa 1,4-beta-Celobiosidasa/metabolismo , Celulosa/metabolismo , Trichoderma/enzimología , Celulosa/química , Celulosa 1,4-beta-Celobiosidasa/genética , Chlorophyta/química , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación Fúngica de la Expresión Génica/fisiología
18.
Methods Enzymol ; 565: 123-46, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26577730

RESUMEN

Isotopic enrichment of biomacromolecules is a widely used technique that enables the investigation of the structural and dynamic properties to provide information not accessible with natural abundance isotopic composition. This study reports an approach for deuterium incorporation into bacterial cellulose. A media formulation for growth of Acetobacter xylinus subsp. sucrofermentans and Gluconacetobacter hansenii was formulated that supports cellulose production in deuterium (D) oxide. The level of D incorporation can be varied by altering the ratio of deuterated and protiated glycerol used during cell growth in the D2O-based growth medium. Spectroscopic analysis and mass spectrometry show that the level of deuterium incorporation is high (>90%) for the perdeuterated form of bacterial cellulose. The small-angle neutron scattering profiles of the cellulose with different amounts of D incorporation are all similar indicating that there are no structural changes in the cellulose due to substitution of deuterium for hydrogen. In addition, by varying the amount of deuterated glycerol in the media it was possible to vary the scattering length density of the deuterated cellulose. The ability to control deuterium content of cellulose extends the range of experiments using techniques such as neutron scattering to reveal information about the structure and dynamics of cellulose, and its interactions with other biomacromolecules as well as synthetic polymers used for development of composite materials.


Asunto(s)
Bacterias/metabolismo , Celulosa/biosíntesis , Deuterio/metabolismo , Neutrones , Dispersión de Radiación , Espectroscopía Infrarroja por Transformada de Fourier
19.
J Exp Bot ; 66(14): 4279-94, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25911738

RESUMEN

Cell walls, which constitute the bulk of plant biomass, vary considerably in their structure, composition, and architecture. Studies on plant cell walls can be conducted on both native and pre-treated plant biomass samples, allowing an enhanced understanding of these structural and compositional variations. Here glycome profiling was employed to determine the relative abundance of matrix polysaccharides in several phylogenetically distinct native and pre-treated plant biomasses. Eight distinct biomass types belonging to four different subgroups (i.e. monocot grasses, woody dicots, herbaceous dicots, and softwoods) were subjected to various regimes of AFEX™ (ammonia fiber expansion) pre-treatment [AFEX is a trademark of MBI, Lansing (http://www.mbi.org]. This approach allowed detailed analysis of close to 200 cell wall glycan epitopes and their relative extractability using a high-throughput platform. In general, irrespective of the phylogenetic origin, AFEX™ pre-treatment appeared to cause loosening and improved accessibility of various xylan epitope subclasses in most plant biomass materials studied. For most biomass types analysed, such loosening was also evident for other major non-cellulosic components including subclasses of pectin and xyloglucan epitopes. The studies also demonstrate that AFEX™ pre-treatment significantly reduced cell wall recalcitrance among diverse phylogenies (except softwoods) by inducing structural modifications to polysaccharides that were not detectable by conventional gross composition analyses. It was found that monitoring changes in cell wall glycan compositions and their relative extractability for untreated and pre-treated plant biomass can provide an improved understanding of variations in structure and composition of plant cell walls and delineate the role(s) of matrix polysaccharides in cell wall recalcitrance.


Asunto(s)
Biomasa , Carbohidratos/química , Pared Celular/química , Populus
20.
J Phys Chem B ; 119(2): 465-73, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25417548

RESUMEN

Commercial-scale biofuel production requires a deep understanding of the structure and dynamics of its principal target: cellulose. However, an accurate description and modeling of this carbohydrate structure at the mesoscale remains elusive, particularly because of its overwhelming length scale and configurational complexity. We have derived a set of MARTINI coarse-grained force field parameters for the simulation of crystalline cellulose fibers. The model is adapted to reproduce different physicochemical and mechanical properties of native cellulose Iß. The model is able not only to handle a transition from cellulose Iß to another cellulose allomorph, cellulose IIII, but also to capture the physical response to temperature and mechanical bending of longer cellulose nanofibers. By developing the MARTINI model of a solid cellulose crystalline fiber from the building blocks of a soluble cellobiose coarse-grained model, we have provided a systematic way to build MARTINI models for other crystalline biopolymers.


Asunto(s)
Celulosa/química , Modelos Moleculares , Conformación de Carbohidratos , Fenómenos Mecánicos , Temperatura , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...