Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 35(38): e2303244, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37285797

RESUMEN

The perovskite compound CsPbBr3 has recently been discovered as a promising room-temperature semiconductor radiation detector, offering an inexpensive and easy-to-manufacture alternative to the current benchmark material Cd1-x Znx Te (CZT). The performance of CsPbBr3 sensors is evaluated under harsh conditions, such as high radiation doses often found in industrial settings and extreme radiation in space. Results show minimal degradation in detector performance after exposure to 1 Mrad of Co-60 gamma radiation, with no significant change to energy resolution or hole mobility and lifetime. Additionally, many of the devices are still functional after being exposed to a 10 Mrad dose over 3 days, and those that do not survive can still be refabricated into working detectors. These results suggest that the failure mode in these devices is likely related to the interface between the electrode and material and their reaction, or the electrode itself and not the material itself. Overall, the study suggests that CsPbBr3 has high potential as a reliable and efficient radiation detector in various applications, including those involving extreme fluxes and energies of gamma-ray radiation.

2.
ACS Appl Mater Interfaces ; 15(13): 16895-16901, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36961964

RESUMEN

Making semiconductor radiation detectors that work at room temperature relies heavily on the deposition and pixelation of electrodes. Electrode patterning of perovskite solar cells widely implements laser scribing techniques, which is a convenient, scalable, and inexpensive technique. However, this method has not found its application in radiation detector patterning yet, and the question whether laser scribing can achieve high-quality patterns with minimum damage to a detector crystal and low interpixel cross-talk remains largely unanswered. To prove that laser scribing is a practical method for electrode patterning on perovskite CsPbBr3 detectors, we use the material to create a variety of patterns. A very low lateral leakage current (60 nA at 10 V) and high mobility-lifetime product (9.7(3) × 10-4 cm2/V) were observed between the pixel and the guard ring in tests of single-pixel devices with a separation of 200 or 100 µm between the central electrode and the guard ring. The 122 and 136 keV photopeaks in 57Co gamma-ray spectra were very well resolved with an energy resolution of up to 6.1% at 122 keV. A further reduction in gap size to 50 µm is conceivable, but more process optimization is needed.

3.
Adv Mater ; 35(25): e2211840, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36943095

RESUMEN

Solution-processed perovskites are promising for hard X-ray and gamma-ray detection, but there are limited reports on their performance under extremely intense X-rays. Here, a solution-grown all-inorganic perovskite CsPbBr3 single-crystal semiconductor detector capable of operating at ultrahigh X-ray flux of 1010 photons s-1 mm-2 is reported. High-quality solution-grown CsPbBr3 single crystals are fabricated into detectors with a Schottky diode structure of eutectic gallium indium/CsPbBr3 /Au. A high reverse-bias voltage of 1000 V (435 V mm- 1 ) can be applied with a small and stable dark current of ≈60-70 nA (≈9-10 nA mm- 2 ), which enables a high sensitivity larger than 10 000 µC Gyair -1 cm- 2 and a simultaneous low detection limit of 22 nGyair s- 1 . The CsPbBr3 semiconductor detector shows an excellent photocurrent linearity and reproducibility under 58.61 keV synchrotron X-rays with flux from 106 to 1010 photons s- 1 mm- 2 . Defect characterization by thermally stimulated current spectroscopy shows a similar low defect density of a synchrotron X-ray and a lab X-ray irradiated device. Solid-state nuclear magnetic resonance spectroscopy suggests that the excellent performance of the solution-grown CsPbBr3 single crystal may be associated with its good short-range order, comparable to the spectrometer-grade melt-grown CsPbBr3 .

4.
Angew Chem Int Ed Engl ; 62(14): e202301191, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36705521

RESUMEN

Synthesizing solids in molten fluxes enables the rapid diffusion of soluble species at temperatures lower than in solid-state reactions, leading to crystal formation of kinetically stable compounds. In this study, we demonstrate the effectiveness of mixed hydroxide and halide fluxes in synthesizing complex Sr/Ag/Se in mixed LiOH/LiCl. We have accessed a series of two-dimensional Sr(Ag1-x Lix )2 Se2 layered phases. With increased LiOH/LiCl ratio or reaction temperature, Li partially substituted Ag to form solid solutions of Sr(Ag1-x Lix )2 Se2 with x up to 0.45. In addition, a new type of intergrowth compound [Sr3 Se2 ][(Ag1-x Lix )2 Se2 ] was synthesized upon further reaction of Sr(Ag1-x Lix )2 Se2 with SrSe. Both Sr(Ag1-x Lix )2 Se2 and [Sr3 Se2 ][(Ag1-x Lix )2 Se2 ] exhibit a direct band gap, which increases with increasing Li substitution (x). Therefore, the band gap of Sr(Ag1-x Lix )2 Se2 can be precisely tuned via fine-tuning x that is controlled by only the flux ratio and temperature.

5.
Nature ; 612(7938): 72-77, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36352229

RESUMEN

Advancements in many modern technologies rely on the continuous need for materials discovery. However, the design of synthesis routes leading to new and targeted solid-state materials requires understanding of reactivity patterns1-3. Advances in synthesis science are necessary to increase efficiency and accelerate materials discovery4-10. We present a highly effective methodology for the rational discovery of materials using high-temperature solutions or fluxes having tunable solubility. This methodology facilitates product selection by projecting the free-energy landscape into real synthetic variables: temperature and flux ratio. We demonstrate the effectiveness of this technique by synthesizing compounds in the chalcogenide system of A(Ba)-Cu-Q(O) (Q = S or Se; A = Na, K or Rb) using mixed AOH/AX (A = Li, Na, K or Rb; X = Cl or I) fluxes. We present 30 unreported compounds or compositions, including more than ten unique structural types, by systematically varying the temperature and flux ratios without requiring changing the proportions of starting materials. Also, we found that the structural dimensionality of the compounds decreases with increasing reactant solubility and temperature. This methodology serves as an effective general strategy for the rational discovery of inorganic solids.

6.
Inorg Chem ; 61(35): 13719-13727, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35998562

RESUMEN

The metal thiophosphates (MTP), M2P2S6, are a versatile class of van der Waals materials, which are notable for the possibility of tuning their magnetic properties with the incorporation of different transition-metal cations. Further, they also offer opportunities to probe the independent and synergistic role of the magnetically active cation sublattice when coupled to P2Q6 polyhedra. Herein, we report the structural, magnetic, and electronic properties of the series of MTPs, MnxCo2-xP2S6 (x = 0.25, 0.5, 1, 1.5, 1.75) synthesized by the P2S5 flux method. Structural and elemental analysis indicates a homogeneous stoichiometry in the MnxCo2-xP2S6 compounds. We observe that a correlation is apparent between the intensities of specific Raman modes and Raman shifts with respect to the alloying ratio between Mn and Co. Magnetic susceptibility measurements indicate that the alloyed systems adopt an ordered antiferromagnetic (AFM) configuration with a dependence of the Néel temperature on the alloying ratio. A possible magnetic frustration behavior was observed for the composition MnCoP2S6 due to magnetic moment compensation as the alloying ratio between Mn and Co approaches parity. Interestingly, mixed oxidation states of the metal cation species are also observed in MnxCo2-xP2S6 along with a linear dependence of the work function on the alloying ratio of Mn and Co.

7.
Inorg Chem ; 61(21): 8233-8240, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35580355

RESUMEN

We report three new mixed-anion two-dimensional (2D) compounds: SrFPbBiS3, SrFAg0.5Bi1.5S3, and Sr2F2Bi2/3S2. Their structures as well as the parent compound SrFBiS2 were refined using single-crystal X-ray diffraction data, with the sequence of SrFBiS2, SrFPbBiS3, and SrFAg0.5Bi1.5S3 defining the new homologous series SrFMnBiSn+2 (M = Pb, Ag0.5Bi0.5; n = 0, 1). Sr2F2Bi2/3S2 has a different structure, which is modulated with a q vector of 1/3b* and was refined in superspace group X2/m(0ß0)00 as well as in the 1 × 3 × 1 superstructure with space group C2/m (with similar results). Sr2F2Bi2/3S2 features hexagonal layers of alternating [Sr2F2]2+ and [Bi2/3S2]2-, and the modulated structure arises from the unique ordering pattern of Sr2+ cations. SrFPbBiS3, SrFAg0.5Bi1.5S3, and Sr2F2Bi2/3S2 are semiconductors with band gaps of 1.31, 1.21, and 1.85 eV, respectively. The latter compound exhibits room temperature red photoluminescence at ∼700 nm.

8.
Adv Mater ; 33(44): e2104908, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34523151

RESUMEN

The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting and practically important for energy conversion. Herein, an intrinsic p-type semiconductor TlCuSe that has an intrinsically ultralow thermal conductivity (0.25 W m-1 K-1 ), a high power factor (11.6 µW cm-1 K-2 ), and a high figure of merit, ZT (1.9) at 643 K is described. The weak chemical bonds, originating from the filled antibonding orbitals p-d* within the edge-sharing CuSe4 tetrahedra and long TlSe bonds in the PbClF-type structure, in conjunction with the large atomic mass of Tl lead to an ultralow sound velocity. Strong anharmonicity, coming from Tl+ lone-pair electrons, boosts phonon-phonon scattering rates and further suppresses lattice thermal conductivity. The multiband character of the valence band structure contributing to power factor enhancement benefits from the lone-pair electrons of Tl+ as well, which modify the orbital character of the valence bands, and pushes the valence band maximum off the Γ-point, increasing the band degeneracy. The results provide new insight on the rational design of thermoelectric materials.

9.
J Am Chem Soc ; 143(34): 13646-13654, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34410691

RESUMEN

Molten salts are promising reaction media candidates for the discovery of novel materials; however, they offer little control over oxidation state compared to aqueous solutions. Here, we demonstrated that when two hydroxides are mixed, their melts become fluxes with tunable solubility, which are surprisingly powerful solvents for ternary chalcogenides and offer effective paths for crystal growth to new compounds. We report that precise control of the oxidation state of Ni is achievable in mixed molten LiOH/KOH to grow single crystals of all known ternary K-Ni-S compounds. It is also possible to access several new phases, including a new polytope of ß-K2Ni3S4, as well as low-valence KNi4S2 and K4Ni9S11. KNi4S2 is a two-dimensional low-valence nickel-rich sulfide, and ß-K2Ni3S4 has a hexagonal lattice. Moreover, using KNi4S2 as a template, we obtained a new layered binary Ni2S by topotactic deintercalation of K. The new binary Ni2S has a van der Waals gap and can function as a new host layer for intercalation chemistry, as demonstrated by the intercalation of LiOH between its layers. The oxidation states of low-valence KNi4S2 and Ni2S were studied using X-ray absorption spectroscopy and X-ray photoelectron spectroscopy. Density functional theory calculations showed large antibonding interactions at the Fermi level for both KNi4S2 and Ni2S, corresponding to the flat-bands with large Ni-dx2-y2 character.

10.
Nat Mater ; 20(12): 1683-1688, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34294884

RESUMEN

Superionic conductors possess liquid-like ionic diffusivity in the solid state, finding wide applicability from electrolytes in energy storage to materials for thermoelectric energy conversion. Type I superionic conductors (for example, AgI, Ag2Se and so on) are defined by a first-order transition to the superionic state and have so far been found exclusively in three-dimensional crystal structures. Here, we reveal a two-dimensional type I superionic conductor, α-KAg3Se2, by scattering techniques and complementary simulations. Quasi-elastic neutron scattering and ab initio molecular dynamics simulations confirm that the superionic Ag+ ions are confined to subnanometre sheets, with the simulated local structure validated by experimental X-ray powder pair-distribution-function analysis. Finally, we demonstrate that the phase transition temperature can be controlled by chemical substitution of the alkali metal ions that compose the immobile charge-balancing layers. Our work thus extends the known classes of superionic conductors and will facilitate the design of new materials with tailored ionic conductivities and phase transitions.

11.
Inorg Chem ; 60(11): 7827-7833, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-33998812

RESUMEN

We report a new polymorph of LuRuGe, obtained in indium flux. This phase exhibits the noncentrosymmetric ZrNiAl-type structure with the space group P6̅2m as determined by single-crystal X-ray diffraction. This polymorph can convert into another centrosymmetric polymorph (TiNiSi-type structure, space group Pnma) at high temperatures. We performed electrical transport, magnetization, and specific heat measurements on this new phase. It shows metallic behavior with a Hall sign change from negative at 2 K to positive at 125 K. LuRuGe exhibits Pauli paramagnetism as the ground state with no local magnetic moments from either the Ru or Lu site. The Debye temperature Θ = 348 K and electronic coefficient γe = 3.6 mJ K-2 mol-1 are extracted from the low-temperature specific heat data in LuRuGe. We also carried out first-principles density functional theory calculations to map out the electronic band structure and density of states. There are several electronic bands crossing the Fermi level, supporting a multiband scenario consistent with the Hall sign change. The density of states around the Fermi level is mainly from Ru 4d and Ge 4p electrons, indicating a strong hybridization between those atomic orbitals.

12.
Nat Commun ; 12(1): 1509, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33686062

RESUMEN

Ferroelectricity is typically suppressed under hydrostatic compression because the short-range repulsions, which favor the nonpolar phase, increase more rapidly than the long-range interactions, which prefer the ferroelectric phase. Here, based on single-crystal X-ray diffraction and density-functional theory, we provide evidence of a ferroelectric-like transition from phase I213 to R3 induced by pressure in two isostructural defect antiperovskites Hg3Te2Cl2 (15.5 GPa) and Hg3Te2Br2 (17.5 GPa). First-principles calculations show that this transition is attributed to pressure-induced softening of the infrared phonon mode Γ4, similar to the archetypal ferroelectric material BaTiO3 at ambient pressure. Additionally, we observe a gradual band-gap closing from ~2.5 eV to metallic-like state of Hg3Te2Br2 with an unexpectedly stable R3 phase even after semiconductor-to-metal transition. This study demonstrates the possibility of emergence of polar metal under pressure in this class of materials and establishes the possibility of pressure-induced ferroelectric-like transition in perovskite-related systems.

13.
J Am Chem Soc ; 143(4): 2068-2077, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33492148

RESUMEN

The detection of γ-rays at room temperature with high-energy resolution using semiconductors is one of the most challenging applications. The presence of even the smallest amount of defects is sufficient to kill the signal generated from γ-rays which makes the availability of semiconductors detectors a rarity. Lead halide perovskite semiconductors exhibit unusually high defect tolerance leading to outstanding and unique optoelectronic properties and are poised to strongly impact applications in photoelectric conversion/detection. Here we demonstrate for the first time that large size single crystals of the all-inorganic perovskite CsPbCl3 semiconductor can function as a high-performance detector for γ-ray nuclear radiation at room temperature. CsPbCl3 is a wide-gap semiconductor with a bandgap of 3.03 eV and possesses a high effective atomic number of 69.8. We identified the two distinct phase transitions in CsPbCl3, from cubic (Pm-3m) to tetragonal (P4/mbm) at 325 K and finally to orthorhombic (Pbnm) at 316 K. Despite crystal twinning induced by phase transitions, CsPbCl3 crystals in detector grade can be obtained with high electrical resistivity of ∼1.7 × 109 Ω·cm. The crystals were grown from the melt with volume over several cubic centimeters and have a low thermal conductivity of 0.6 W m-1 K-1. The mobilities for electron and hole carriers were determined to ∼30 cm2/(V s). Using photoemission yield spectroscopy in air (PYSA), we determined the valence band maximum at 5.66 ± 0.05 eV. Under γ-ray exposure, our Schottky-type planar CsPbCl3 detector achieved an excellent energy resolution (∼16% at 122 keV) accompanied by a high figure-of-merit hole mobility-lifetime product (3.2 × 10-4 cm2/V) and a long hole lifetime (16 µs). The results demonstrate considerable defect tolerance of CsPbCl3 and suggest its strong potential for γ-radiation and X-ray detection at room temperature and above.

14.
Sci Adv ; 6(45)2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33158858

RESUMEN

Spintronics holds great potential for next-generation high-speed and low-power consumption information technology. Recently, lead halide perovskites (LHPs), which have gained great success in optoelectronics, also show interesting magnetic properties. However, the spin-related properties in LHPs originate from the spin-orbit coupling of Pb, limiting further development of these materials in spintronics. Here, we demonstrate a new generation of halide perovskites, by alloying magnetic elements into optoelectronic double perovskites, which provide rich chemical and structural diversities to host different magnetic elements. In our iron-alloyed double perovskite, Cs2Ag(Bi:Fe)Br6, Fe3+ replaces Bi3+ and forms FeBr6 clusters that homogenously distribute throughout the double perovskite crystals. We observe a strong temperature-dependent magnetic response at temperatures below 30 K, which is tentatively attributed to a weak ferromagnetic or antiferromagnetic response from localized regions. We anticipate that this work will stimulate future efforts in exploring this simple yet efficient approach to develop new spintronic materials based on lead-free double perovskites.

15.
J Am Chem Soc ; 142(28): 12524-12535, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32628474

RESUMEN

Defect chemistry is critical to designing high performance thermoelectric materials. In SnTe, the naturally large density of cation vacancies results in excessive hole doping and frustrates the ability to control the thermoelectric properties. Yet, recent work also associates the vacancies with suppressed sound velocities and low lattice thermal conductivity, underscoring the need to understand the interplay between alloying, vacancies, and the transport properties of SnTe. Here, we report solid solutions of SnTe with NaSbTe2 and NaBiTe2 (NaSnmSbTem+2 and NaSnmBiTem+2, respectively) and focus on the impact of the ternary alloys on the cation vacancies and thermoelectric properties. We find introduction of NaSbTe2, but not NaBiTe2, into SnTe nearly doubles the natural concentration of Sn vacancies. Furthermore, DFT calculations suggest that both NaSbTe2 and NaBiTe2 facilitate valence band convergence and simultaneously narrow the band gap. These effects improve the power factors but also make the alloys more prone to detrimental bipolar diffusion. Indeed, the performance of NaSnmBiTem+2 is limited by strong bipolar transport and only exhibits modest maximum ZTs ≈ 0.85 at 900 K. In NaSnmSbTem+2 however, the doubled vacancy concentration raises the charge carrier density and suppresses bipolar diffusion, resulting in superior power factors than those of the Bi-containing analogues. Lastly, NaSbTe2 incorporation lowers the sound velocity of SnTe to give glasslike lattice thermal conductivities. Facilitated by the favorable impacts of band convergence, vacancy-augmented hole concentration, and lattice softening, NaSnmSbTem+2 reaches high ZT ≈ 1.2 at 800-900 K and a competitive average ZTavg of 0.7 over 300-873 K. The difference in ZT between two chemically similar compounds underscores the importance of intrinsic defects in engineering high-performance thermoelectrics.

16.
J Am Chem Soc ; 142(13): 6312-6323, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32160464

RESUMEN

Subchalcogenides are uncommon compounds where the metal atoms are in unusually low formal oxidation states. They bridge the gap between intermetallics and semiconductors and can have unexpected structures and properties because of the exotic nature of their chemical bonding as they contain both metal-metal and metal-main group (e.g., halide, chalcogenide) interactions. Finding new members of this class of materials presents synthetic challenges as attempts to make them often result in phase separation into binary compounds. We overcome this difficulty by utilizing indium as a metal flux to synthesize large (millimeter scale) single crystals of novel subchalcogenide materials. Herein, we report two new compounds Ir2In8Q (Q = Se, Te) and compare their structural and electrical properties to the previously reported Ir2In8S analogue. Ir2In8Se and Ir2In8Te crystallize in the P42/mnm space group and are isostructural to Ir2In8S, but also have commensurately modulated (with q vectors q = 1/6a* + 1/6b* and q = 1/10a* + 1/10b* for Ir2In8Se and Ir2In8Te, respectively) low-temperature phase transitions, where the chalcogenide anions in the channels experience a distortion in the form of In-Q bond alternation along the ab plane. Both compounds display re-entrant structural behavior, where the supercells appear on cooling but revert to the original subcell below 100 K, suggesting competing structural and electronic interactions dictate the overall structure. Notably, these materials are topological semimetal candidates with symmetry-protected Dirac crossings near the Fermi level and exhibit high electron mobilities (∼1500 cm2 V-1 s-1 at 1.8 K) and moderate carrier concentrations (∼1020 cm-3) from charge transport measurements. This work highlights metal flux as a synthetic route to high quality single crystals of novel intermetallic subchalcogenides with Dirac semimetal behavior.

17.
Nature ; 579(7799): E9, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32112062

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

18.
Inorg Chem ; 59(6): 4049-4057, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32096400

RESUMEN

Polycrystalline Sr3OsO6, which is an ordered double-perovskite insulator, is synthesized via solid-state reaction under high-temperature and high-pressure conditions of 1200 °C and 6 GPa. The synthesis enables us to conduct a comparative study of the bulk form of Sr3OsO6 toward revealing the driving mechanism of 1000 K ferromagnetism, which has recently been discovered for epitaxially grown Sr3OsO6 films. Unlike the film, the bulk is dominated by antiferromagnetism rather than ferromagnetism. Therefore, robust ferromagnetic order appears only when Sr3OsO6 is under the influence of interfaces. A specific heat capacity of 39.6(9) × 10-3 J mol-1 K-2 is found at low temperatures (<17 K). This value is remarkably high, suggesting the presence of possible Fermionic-like excitations at the magnetic ground state. Although the bulk and film forms of Sr3OsO6 share the same lattice basis and electrically insulating state, the magnetism is entirely different between them.

19.
Nature ; 577(7790): 346-349, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31942050

RESUMEN

Highly efficient neutron detectors are critical in many sectors, including national security1,2, medicine3, crystallography4 and astronomy5. The main neutron detection technologies currently used involve 3He-gas-filled proportional counters6 and light scintillators7 for thermalized neutrons. Semiconductors could provide the next generation of neutron detectors because their advantages could make them competitive with or superior to existing detectors. In particular, solids with a high concentration of high-neutron-capture nuclides (such as 6Li, 10B) could be used to develop smaller detectors with high intrinsic efficiencies. However, no promising materials have been reported so far for the construction of direct-conversion semiconductor detectors. Here we report on the semiconductor LiInP2Se6 and demonstrate its potential as a candidate material for the direct detection of thermal neutrons at room temperature. This compound has a good thermal-neutron-capture cross-section, a suitable bandgap (2.06 electronvolts) and a favourable electronic band structure for efficient electron charge transport. We used α particles from an 241Am source as a proxy for the neutron-capture reaction and determined that the compact two-dimensional (2D) LiInP2Se6 detectors resolved the full-energy peak with an energy resolution of 13.9 per cent. Direct neutron detection from a moderated Pu-Be source was achieved using 6Li-enriched (95 per cent) LiInP2Se6 detectors with full-peak resolution. We anticipate that these results will spark interest in this field and enable the replacement of 3He counters by semiconductor-based neutron detectors.

20.
J Am Chem Soc ; 141(48): 19130-19137, 2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31697089

RESUMEN

Dirac and Weyl semimetals host exotic quasiparticles with unconventional transport properties, such as high magnetoresistance and carrier mobility. Recent years have witnessed a huge number of newly predicted topological semimetals from existing databases; however, experimental verification often lags behind such predictions. Common reasons are synthetic difficulties or the stability of predicted phases. Here, we report the synthesis of the type-II Dirac semimetal Ir2In8S, an air-stable compound with a new structure type. This material has two Dirac crossings in its electronic structure along the Γ-Z direction of the Brillouin zone. We further show that Ir2In8S has a high electron carrier mobility of ∼10 000 cm2/(V s) at 1.8 K and a large, nonsaturating transverse magnetoresistance of ∼6000% at 3.34 K in a 14 T applied field. Shubnikov de-Haas oscillations reveal several small Fermi pockets and the possibility of a nontrivial Berry phase. With its facile crystal growth, novel structure type, and striking electronic structure, Ir2In8S introduces a new material system to study topological semimetals and enable advances in the field of topological materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...