Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1789, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997508

RESUMEN

Most future projections conducted with coupled general circulation models simulate a non-uniform Indian Ocean warming, with warming hotspots occurring in the Arabian Sea (AS) and the southeastern Indian Ocean (SEIO). But little is known about the underlying physical drivers. Here, we are using a suite of large ensemble simulations of the Community Earth System Model 2 to elucidate the causes of non-uniform Indian Ocean warming. Strong negative air-sea interactions in the Eastern Indian Ocean are responsible for a future weakening of the zonal sea surface temperature gradient, resulting in a slowdown of the Indian Ocean Walker circulation and the generation of southeasterly wind anomalies over the AS. These contribute to anomalous northward ocean heat transport, reduced evaporative cooling, a weakening in upper ocean vertical mixing and an enhanced AS future warming. In contrast, the projected warming in the SEIO is related to a reduction of low-cloud cover and an associated increase in shortwave radiation. Therefore, the regional character of air-sea interactions plays a key role in promoting future large-scale tropical atmospheric circulation anomalies with implications for society and ecosystems far outside the Indian Ocean realm.

2.
Nutr Metab Cardiovasc Dis ; 33(2): 424-433, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36642613

RESUMEN

BACKGROUND AND AIMS: Obesity associated with a change in the quantity and quality of fat depots. Using computed tomography (CT), we analyzed abdominal fat depots in patients with obesity after bariatric surgery according to their metabolic health status. METHODS AND RESULTS: We recruited 79 individuals with metabolically unhealthy obesity before bariatric surgery and compared them with age-sex matched healthy controls. The volume and fat attenuation index (FAI) of fat depots were measured using CT scans that were conducted prior to and a year after bariatric surgery. 'Metabolically healthy' was defined as having no hypertension, normal fasting glucose and a waist-to-hip ratio of <1.05 for men and <0.95 for women. Individuals who achieved a metabolic health status conversion (MHC) (n = 29, 37%)-from unhealthy to healthy-were younger (p < 0.001) as compared to individuals without MHC. Pre-surgery BMI and reduction of BMI did not differ between the two groups (p = 0.099, p = 0.5730). Bariatric surgery reduced the volume and increased the FAI of fat depots. Baseline lower abdominal periaortic adipose tissue (AT) volume (p = 0.014) and great percent reduction in renal sinus AT volume after surgery (p = 0.019) were associated with MHC after surgery. Increased intraperitoneal AT FAI (p = 0.031) was also associated with MHC. CONCLUSION: MHC was not associated with improvement in general obesity, based on indicators such as reduction of BMI after surgery. Weight reduction induced specific abdominal fat depot changes measured by CT are positively associated with MHC.


Asunto(s)
Cirugía Bariátrica , Hipertensión , Masculino , Humanos , Femenino , Obesidad/complicaciones , Grasa Abdominal/diagnóstico por imagen , Cirugía Bariátrica/efectos adversos , Hipertensión/complicaciones , Metaboloma
3.
Nat Commun ; 13(1): 5798, 2022 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-36184681

RESUMEN

Seasonal ice in lakes plays an important role for local communities and lake ecosystems. Here we use Large Ensemble simulations conducted with the Community Earth System Model version 2, which includes a lake simulator, to quantify the response of lake ice to greenhouse warming and to determine emergence patterns of anthropogenic lake ice loss. Our model simulations show that the average duration of ice coverage and maximum ice thickness are projected to decrease over the next 80 years by 38 days and 0.23 m, respectively. In the Canadian Arctic, lake ice loss is accelerated by the cold-season polar amplification. Lake ice on the Tibetan Plateau decreases rapidly due to a combination of strong insolation forcing and ice-albedo feedbacks. Comparing the anthropogenic signal with natural variability represented by the Large Ensemble, we find that lake ecosystems in these regions may be exposed to no-analogue ice coverage within the next 4-5 decades.


Asunto(s)
Cambio Climático , Lagos , Canadá , Ecosistema , Cubierta de Hielo
4.
Sci Rep ; 11(1): 16852, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34413343

RESUMEN

The COVID-19 pandemic caused disruptions of public life and imposed lockdown measures in 2020 resulted in considerable reductions of anthropogenic aerosol emissions. It still remains unclear how the associated short-term changes in atmospheric chemistry influenced weather and climate on regional scales. To understand the underlying physical mechanisms, we conduct ensemble aerosol perturbation experiments with the Community Earth System Model, version 2. In the simulations reduced anthropogenic aerosol emissions in February generate anomalous surface warming and warm-moist air advection which promotes low-level cloud formation over China. Although the simulated response is weak, it is detectable in some areas, in qualitative agreement with the observations. The negative dynamical cloud feedback offsets the effect from reduced cloud condensation nuclei. Additional perturbation experiments with strongly amplified air pollution over China reveal a nonlinear sensitivity of regional atmospheric conditions to chemical/radiative perturbations. COVID-19-related changes in anthropogenic aerosol emissions provide an excellent testbed to elucidate the interaction between air pollution and climate.


Asunto(s)
COVID-19/epidemiología , Clima , SARS-CoV-2/fisiología , Aerosoles , Contaminantes Atmosféricos , Atmósfera , COVID-19/transmisión , China , Control de Enfermedades Transmisibles , Asia Oriental , Humanos , Pandemias , Tiempo (Meteorología)
5.
Proc Natl Acad Sci U S A ; 111(32): 11636-41, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25071183

RESUMEN

Water vapor in the upper troposphere strongly regulates the strength of water-vapor feedback, which is the primary process for amplifying the response of the climate system to external radiative forcings. Monitoring changes in upper-tropospheric water vapor and scrutinizing the causes of such changes are therefore of great importance for establishing the credibility of model projections of past and future climates. Here, we use coupled ocean-atmosphere model simulations under different climate-forcing scenarios to investigate satellite-observed changes in global-mean upper-tropospheric water vapor. Our analysis demonstrates that the upper-tropospheric moistening observed over the period 1979-2005 cannot be explained by natural causes and results principally from an anthropogenic warming of the climate. By attributing the observed increase directly to human activities, this study verifies the presence of the largest known feedback mechanism for amplifying anthropogenic climate change.


Asunto(s)
Atmósfera/análisis , Calentamiento Global , Vapor/análisis , Cambio Climático , Monitoreo del Ambiente , Efecto Invernadero , Humanos , Modelos Teóricos , Vapor/efectos adversos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...