Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Sci Biotechnol ; 31(10): 1325-1334, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35992320

RESUMEN

Beyond probiotics, the interest in the application of postbiotics to various fields has been growing. We aimed to develop a novel postbiotic complex (PC) with antibacterial and anti-inflammatory properties. Through antibacterial activity testing against Staphylococcus aureus or Cutibacterium acnes, a PC [a mixture of cell-free supernatants (postbiotics) from probiotic Lactobacillus helveticus (HY7801) and Lactococcus lactis (HY449)] was developed. Anti-inflammatory activity of the PC was investigated using HaCaT keratinocytes treated with S. aureus or C. acnes. PC significantly decreased IL-8 levels and increased hyaluronic acid levels in HaCaT cells cultured with S. aureus or C. acnes. GC-MS based metabolic profiling suggested 2-hydroxyisocaproic acid, hypoxanthine, succinic acid, ornithine, and γ-aminobutyric acid as potential contributing metabolites for the antibacterial and anti-inflammatory effects of PC. The PC developed in this study could be utilized in food, cosmetics, and pharmaceutical products as an alternative or complementary resources of probiotics. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01123-x.

2.
Biomolecules ; 10(5)2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32384794

RESUMEN

Fermented vegetable juices have gained attention due to their various beneficial effects on human health. In this study, we employed gas chromatography-mass spectrometry, direct infusion-mass spectrometry, and liquid chromatography-mass spectrometry to identify useful metabolites, lipids, and carotenoids in vegetable juice (VJ) fermented with Lactobacillus plantarum HY7712, Lactobacillus plantarum HY7715, Lactobacillus helveticus HY7801, and Bifidobacterium animalis ssp. lactis HY8002. A total of 41 metabolites, 24 lipids, and 4 carotenoids were detected in the fermented and non-fermented VJ (control). The lycopene, α-carotene, and ß-carotene levels were higher in VJ fermented with L. plantarum strains (HY7712 and HY7715) than in the control. Proline content was also elevated in VJ fermented with HY7715. Uracil, succinic acid, and α-carotene concentration was increased in VJ fermented with HY7801, while glycine and lycopene levels were raised in VJ fermented with HY8002. This study confirmed that each probiotic strain has distinctive characteristics and produces unique changes to metabolic profiles of VJ during fermentation. Our results suggest that probiotic-fermented VJ is a promising functional beverage that contains more beneficial metabolites and carotenoids than commercial non-fermented VJ.


Asunto(s)
Fermentación , Jugos de Frutas y Vegetales/microbiología , Probióticos/metabolismo , Carotenoides/metabolismo , Lactobacillus/metabolismo , Lipidómica , Metaboloma
3.
J Med Food ; 21(11): 1086-1095, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30004273

RESUMEN

The intestinal microflora plays important roles in the health of the host, such as nutrient processing and the modulation of intestinal immune responses. The constituents of the diet greatly affect the composition of the microbiota and its metabolites. The human intestinal microbiota is made up of around 100 trillion microbial cells encompassing at least 300 species. Consuming probiotics may lead to changes in the intestinal microflora that influence host health. Metabolomics is a powerful tool for revealing metabolic changes in biofluids, tissues, and organs of hosts induced by the consumption of probiotics, and lipidomics in particular is a technical approach that focuses on the analysis of lipids in various cells and biofluids. Metabolomics and lipidomics have been used to investigate intracellular and extracellular metabolites as well as for the nontargeted profiling and fingerprinting of metabolites. Based on metabolomics and lipidomics investigations, we reviewed the effects of consuming probiotics on metabolic profiles in controlled intestinal environments. We also discuss the associations between metabolic changes and human diseases after consuming probiotics in uncontrolled intestinal environments. In addition, we review the metabolic changes that take place within the food matrix during probiotic fermentation.


Asunto(s)
Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Lípidos/química , Probióticos/metabolismo , Animales , Bacterias/química , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Humanos , Intestinos/química , Intestinos/microbiología , Metabolismo de los Lípidos , Metabolómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA