Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Nat Immunol ; 25(6): 1020-1032, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38831106

RESUMEN

The efficacy of T cell-based immunotherapies is limited by immunosuppressive pressures in the tumor microenvironment. Here we show a predominant role for the interaction between BTLA on effector T cells and HVEM (TNFRSF14) on immunosuppressive tumor microenvironment cells, namely regulatory T cells. High BTLA expression in chimeric antigen receptor (CAR) T cells correlated with poor clinical response to treatment. Therefore, we deleted BTLA in CAR T cells and show improved tumor control and persistence in models of lymphoma and solid malignancies. Mechanistically, BTLA inhibits CAR T cells via recruitment of tyrosine phosphatases SHP-1 and SHP-2, upon trans engagement with HVEM. BTLA knockout thus promotes CAR signaling and subsequently enhances effector function. Overall, these data indicate that the BTLA-HVEM axis is a crucial immune checkpoint in CAR T cell immunotherapy and warrants the use of strategies to overcome this barrier.


Asunto(s)
Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Receptores Inmunológicos , Miembro 14 de Receptores del Factor de Necrosis Tumoral , Microambiente Tumoral , Animales , Humanos , Inmunoterapia Adoptiva/métodos , Miembro 14 de Receptores del Factor de Necrosis Tumoral/metabolismo , Miembro 14 de Receptores del Factor de Necrosis Tumoral/inmunología , Miembro 14 de Receptores del Factor de Necrosis Tumoral/genética , Ratones , Microambiente Tumoral/inmunología , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/genética , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Linfocitos T Reguladores/inmunología , Transducción de Señal , Línea Celular Tumoral , Neoplasias/inmunología , Neoplasias/terapia , Ratones Noqueados
2.
Front Immunol ; 15: 1342285, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576618

RESUMEN

B cell receptors (BCRs) denote antigen specificity, while corresponding cell subsets indicate B cell functionality. Since each B cell uniquely encodes this combination, physical isolation and subsequent processing of individual B cells become indispensable to identify both attributes. However, this approach accompanies high costs and inevitable information loss, hindering high-throughput investigation of B cell populations. Here, we present BCR-SORT, a deep learning model that predicts cell subsets from their corresponding BCR sequences by leveraging B cell activation and maturation signatures encoded within BCR sequences. Subsequently, BCR-SORT is demonstrated to improve reconstruction of BCR phylogenetic trees, and reproduce results consistent with those verified using physical isolation-based methods or prior knowledge. Notably, when applied to BCR sequences from COVID-19 vaccine recipients, it revealed inter-individual heterogeneity of evolutionary trajectories towards Omicron-binding memory B cells. Overall, BCR-SORT offers great potential to improve our understanding of B cell responses.


Asunto(s)
Subgrupos de Linfocitos B , Aprendizaje Profundo , Humanos , Filogenia , Vacunas contra la COVID-19 , Receptores de Antígenos de Linfocitos B/genética
3.
Nat Commun ; 15(1): 3368, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643233

RESUMEN

The immune escape of Omicron variants significantly subsides by the third dose of an mRNA vaccine. However, it is unclear how Omicron variant-neutralizing antibodies develop under repeated vaccination. We analyze blood samples from 41 BNT162b2 vaccinees following the course of three injections and analyze their B-cell receptor (BCR) repertoires at six time points in total. The concomitant reactivity to both ancestral and Omicron receptor-binding domain (RBD) is achieved by a limited number of BCR clonotypes depending on the accumulation of somatic hypermutation (SHM) after the third dose. Our findings suggest that SHM accumulation in the BCR space to broaden its specificity for unseen antigens is a counterprotective mechanism against virus variant immune escape.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Vacuna BNT162 , COVID-19/prevención & control , SARS-CoV-2/genética , Anticuerpos Neutralizantes , Anticuerpos Antivirales
5.
Radiology ; 310(2): e231406, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38411517

RESUMEN

Background Chimeric antigen receptor (CAR) T cells are a promising cancer therapy; however, reliable and repeatable methods for tracking and monitoring CAR T cells in vivo remain underexplored. Purpose To investigate direct and indirect imaging strategies for tracking the biodistribution of CAR T cells and monitoring their therapeutic effect in target tumors. Materials and Methods CAR T cells co-expressing a tumor-targeting gene (anti-CD19 CAR) and a human somatostatin receptor subtype 2 (hSSTr2) reporter gene were generated from human peripheral blood mononuclear cells. After direct labeling with zirconium 89 (89Zr)-p-isothiocyanatobenzyl-desferrioxamine (DFO), CAR T cells were intravenously injected into immunodeficient mice with a CD19-positive and CD19-negative human tumor xenograft on the left and right flank, respectively. PET/MRI was used for direct in vivo imaging of 89Zr-DFO-labeled CAR T cells on days 0, 1, 3, and 7 and for indirect cell imaging with the radiolabeled somatostatin receptor-targeted ligand gallium 68 (68Ga)-DOTA-Tyr3-octreotide (DOTATOC) on days 6, 9, and 13. On day 13, mice were euthanized, and tissues and tumors were excised. Results The 89Zr-DFO-labeled CAR T cells were observed on PET/MRI scans in the liver and lungs of mice (n = 4) at all time points assessed. However, they were not visualized in CD19-positive or CD19-negative tumors, even on day 7. Serial 68Ga-DOTATOC PET/MRI showed CAR T cell accumulation in CD19-positive tumors but not in CD19-negative tumors from days 6 to 13. Notably, 68Ga-DOTATOC accumulation in CD19-positive tumors was highest on day 9 (mean percentage injected dose [%ID], 3.7% ± 1.0 [SD]) and decreased on day 13 (mean %ID, 2.6% ± 0.7) in parallel with a decrease in tumor volume (day 9: mean, 195 mm3 ± 27; day 13: mean, 127 mm3 ± 43) in the group with tumor growth inhibition. Enhanced immunohistochemistry staining of cluster of differentiation 3 (CD3) and hSSTr2 was also observed in excised CD19-positive tumor tissues. Conclusion Direct and indirect cell imaging with PET/MRI enabled in vivo tracking and monitoring of CAR T cells in an animal model. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Bulte in this issue.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Animales , Ratones , Xenoinjertos , Radioisótopos de Galio , Receptores de Somatostatina , Leucocitos Mononucleares , Distribución Tisular , Tomografía de Emisión de Positrones , Imagen por Resonancia Magnética , Modelos Animales de Enfermedad , Linfocitos T
6.
Heliyon ; 10(4): e26663, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38420468

RESUMEN

Myasthenia Gravis (MG) patients with anti-acetylcholine receptor (AChR) antibodies frequently show hyperplastic thymi with ectopic germinal centers, where autoreactive B cells proliferate with the aid of T cells. In this study, thymus and peripheral blood (PB) samples were collected from ten AChR antibody-positive MG patients. T cell receptor (TCR) repertoires were analyzed using next-generation sequencing (NGS), and compared with that of an age and sex matched control group generated from a public database. Certain V genes and VJ gene recombination pairs were significantly upregulated in the TCR chains of αß-T cells in the PB of MG patients compared to the control group. Furthermore, the TCR chains found in the thymi of MG patients had a weighted distribution to longer CDR3 lengths when compared to the PB of MG patients, and the TCR beta chains (TRB) in the MG group's PB showed increased clonality encoded by one upregulated V gene. When TRB sequences were sub-divided into groups based on their CDR3 lengths, certain groups showed decreased clonality in the MG group's PB compared to the control group's PB. Finally, we demonstrated that stereotypic MG patient-specific TCR clonotypes co-exist in both the PB and thymi at a much higher frequency than that of the clonotypes confined to the PB. These results strongly suggest the existence of a biased T cell-mediated immune response in MG patients, as observed in other autoimmune diseases.

7.
Mol Cancer ; 22(1): 200, 2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-38066564

RESUMEN

BACKGROUND: Commercial anti-CD19 chimeric antigen receptor T-cell therapies (CART19) are efficacious against advanced B-cell non-Hodgkin lymphoma (NHL); however, most patients ultimately relapse. Several mechanisms contribute to this failure, including CD19-negative escape and CAR T dysfunction. All four commercial CART19 products utilize the FMC63 single-chain variable fragment (scFv) specific to a CD19 membrane-distal epitope and characterized by slow association (on) and dissociation (off) rates. We hypothesized that a novel anti-CD19 scFv that engages an alternative CD19 membrane-proximal epitope independent of FMC63 and that is characterized by faster on- and off-rates could mitigate CART19 failure and improve clinical efficacy. METHODS: We developed an autologous CART19 product with 4-1BB co-stimulation using a novel humanized chicken antibody (h1218). This antibody is specific to a membrane-proximal CD19 epitope and harbors faster on/off rates compared to FMC63. We tested h1218-CART19 in vitro and in vivo using FMC63-CART19-resistant models. We conducted a first-in-human multi-center phase I clinical trial to test AT101 (clinical-grade h1218-CART19) in patients with relapsed or refractory (r/r) NHL. RESULTS: Preclinically, h1218- but not FMC63-CART19 were able to effectively eradicate lymphomas expressing CD19 point mutations (L174V and R163L) or co-expressing FMC63-CAR19 as found in patients relapsing after FMC63-CART19. Furthermore, h1218-CART19 exhibited enhanced killing of B-cell malignancies in vitro and in vivo compared with FMC63-CART19. Mechanistically, we found that h1218-CART19 had reduced activation-induced cell death (AICD) and enhanced expansion compared to FMC63-CART19 owing to faster on- and off-rates. Based on these preclinical results, we performed a phase I dose-escalation trial, testing three dose levels (DL) of AT101 (the GMP version of h1218) using a 3 + 3 design. In 12 treated patients (7 DLBCL, 3 FL, 1 MCL, and 1 MZL), AT101 showed a promising safety profile with 8.3% grade 3 CRS (n = 1) and 8.3% grade 4 ICANS (n = 1). In the whole cohort, the overall response rate was 91.7%, with a complete response rate of 75.0%, which improved to 100% in DL-2 and -3. AT101 expansion correlates with CR and B-cell aplasia. CONCLUSIONS: We developed a novel, safe, and potent CART19 product that recognizes a membrane-proximal domain of CD19 with fast on- and off-rates and showed significant efficacy and promising safety in patients with relapsed B-cell NHL. TRIAL REGISTRATION: NCT05338931; Date: 2022-04-01.


Asunto(s)
Linfoma no Hodgkin , Receptores de Antígenos de Linfocitos T , Receptores Quiméricos de Antígenos , Humanos , Anticuerpos , Antígenos CD19 , Epítopos/metabolismo , Inmunoterapia Adoptiva/efectos adversos , Linfoma no Hodgkin/terapia , Linfoma no Hodgkin/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Receptores de Antígenos de Linfocitos T/antagonistas & inhibidores
8.
J Cancer Res Clin Oncol ; 149(19): 17683-17690, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37897659

RESUMEN

BACKGROUND: The polymeric immunoglobulin receptor (pIgR) is a transmembrane transporter of polymeric IgA through the intestinal epithelium. Its overexpression has been reported in several cancers, but its role as a diagnostic and prognostic biomarker of oncogenesis is currently unclear. METHOD: A literature search was conducted to summarize the functions of pIgR, its expression levels, and its clinical implications. RESULTS: pIgR expression has previously been investigated by proteomic analysis, RNA sequencing, and tissue microarray at the level of both RNA and protein in various cancers including pancreatic, esophageal, gastric, lung, and liver. However, studies have reported inconsistent results on how pIgR levels affect clinical outcomes such as survival rate and chemotherapy resistance. Possible explanations include pIgR mRNA levels being minimally correlated with the rate of downstream pIgR protein synthesis, and the diversity of antibodies used in immunohistochemistry studies further magnifying this ambiguity. In ovarian cancer cells, the transcytosis of IgA accompanied a series of transcriptional changes in intracellular inflammatory pathways that inhibit the progression of cancer, including the upregulation of IFN-gamma and downregulation of tumor-promoting ephrins. These findings suggest that both the levels of pIgR and secreted IgA from tumor-infiltrating B cells affect clinical outcomes. CONCLUSION: Overall, no direct correlation was observed between the levels of pIgR inside tumor tissue and the clinical features in cancer patients. Measuring pIgR protein levels with a more specific and possibly chemically defined antibody, along with tumoral IgA, is a potential solution to better understand the pathways and consequences of pIgR overexpression in cancer cells.


Asunto(s)
Neoplasias , Receptores de Inmunoglobulina Polimérica , Humanos , Regulación hacia Abajo , Inmunoglobulina A/genética , Inmunoglobulina A/metabolismo , Neoplasias/genética , Proteómica , Receptores de Inmunoglobulina Polimérica/genética , Receptores de Inmunoglobulina Polimérica/metabolismo
9.
Sci Rep ; 13(1): 8189, 2023 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-37210393

RESUMEN

Severe fever with thrombocytopenia syndrome virus was first discovered in 2009 as the causative agent of severe fever with thrombocytopenia syndrome. Despite its potential threat to public health, no prophylactic vaccine is yet available. This study developed a heterologous prime-boost strategy comprising priming with recombinant replication-deficient human adenovirus type 5 (rAd5) expressing the surface glycoprotein, Gn, and boosting with Gn protein. This vaccination regimen induced balanced Th1/Th2 immune responses and resulted in potent humoral and T cell-mediated responses in mice. It elicited high neutralizing antibody titers in both mice and non-human primates. Transcriptome analysis revealed that rAd5 and Gn proteins induced adaptive and innate immune pathways, respectively. This study provides immunological and mechanistic insight into this heterologous regimen and paves the way for future strategies against emerging infectious diseases.


Asunto(s)
Adenovirus Humanos , Síndrome de Trombocitopenia Febril Grave , Vacunas Virales , Animales , Ratones , Vacunas Virales/genética , Vacunación/métodos , Linfocitos T , Vectores Genéticos/genética , Anticuerpos Antivirales , Inmunización Secundaria/métodos
10.
Cell Rep ; 40(12): 111391, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36130492

RESUMEN

Alzheimer's disease (AD) is the most prevalent type of dementia. Reports have revealed that the peripheral immune system is linked to neuropathology; however, little is known about the contribution of B lymphocytes in AD. For this longitudinal study, 133 participants are included at baseline and second-year follow-up. Also, we analyze B cell receptor (BCR) repertoire data generated from a public dataset of three normal and 10 AD samples and perform BCR repertoire profiling and pairwise sharing analysis. As a result, longitudinal increase in B lymphocytes is associated with increased cerebral amyloid deposition and hyperactivates induced pluripotent stem cell-derived microglia with loss-of-function for beta-amyloid clearance. Patients with AD share similar class-switched BCR sequences with identical isotypes, despite the high somatic hypermutation rate. Thus, BCR repertoire profiling can lead to the development of individualized immune-based therapeutics and treatment. We provide evidence of both quantitative and qualitative changes in B lymphocytes during AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Linfocitos B/metabolismo , Humanos , Estudios Longitudinales , Receptores de Antígenos de Linfocitos B
11.
FEBS Open Bio ; 12(9): 1634-1643, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35866358

RESUMEN

B cells recognize antigens via membrane-expressed B-cell receptors (BCR) and antibodies. Similar human BCR sequences are frequently found at a significantly higher frequency than that theoretically calculated. Patients infected with SARS-CoV2 and HIV or with autoimmune diseases share very similar BCRs. Therefore, in silico reconstitution of BCR repertoires and identification of stereotypical BCR sequences related to human pathology have diagnostic potential. Furthermore, monitoring changes of clinically significant BCR sequences and isotype conversion has prognostic potential. For BCR repertoire analysis, peripheral blood (PB) is the most convenient source. However, the optimal human PB volume for in silico reconstitution of the BCR repertoire has not been studied in detail. Here, we sampled 5, 10, and 20 mL PB from the left arm and 40 mL PB from the right arm of two volunteers, reconstituted in silico PB BCR repertoires, and compared their composition. In both volunteers, PB sampling over 20 mL resulted in slight increases in functional unique sequences (FUSs) or almost no increase in repertoire diversity. All FUSs with a frequency above 0.08% or 0.03% in the 40 mL PB BCR repertoire were detected even in the 5 mL PB BCR repertoire from each volunteer. FUSs with a higher frequency were more likely to be found in BCR repertoires from reduced PB volume, and those coexisting in two repertoires showed a statistically significant correlation in frequency irrespective of sampled anatomical site. The correlation was more significant in higher-frequency FUSs. These observations support the potential of BCR repertoire analysis for diagnosis.


Asunto(s)
COVID-19 , ARN Viral , Volumen Sanguíneo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Receptores de Antígenos de Linfocitos B/genética , SARS-CoV-2
12.
Nat Commun ; 13(1): 2540, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35534484

RESUMEN

Epitranscriptomic features, such as single-base RNA editing, are sources of transcript diversity in cancer, but little is understood in terms of their spatial context in the tumour microenvironment. Here, we introduce spatial-histopathological examination-linked epitranscriptomics converged to transcriptomics with sequencing (Select-seq), which isolates regions of interest from immunofluorescence-stained tissue and obtains transcriptomic and epitranscriptomic data. With Select-seq, we analyse the cancer stem cell-like microniches in relation to the tumour microenvironment of triple-negative breast cancer patients. We identify alternative splice variants, perform complementarity-determining region analysis of infiltrating T cells and B cells, and assess adenosine-to-inosine base editing in tumour tissue sections. Especially, in triple-negative breast cancer microniches, adenosine-to-inosine editome specific to different microniche groups is identified.


Asunto(s)
Adenosina Desaminasa , Neoplasias de la Mama Triple Negativas , Adenosina/genética , Adenosina Desaminasa/genética , Humanos , Inosina/genética , Células Madre Neoplásicas , Microambiente Tumoral/genética
13.
Adv Mater ; 34(18): e2110424, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35263477

RESUMEN

RNA can self-fold into complex structures that can serve as major biological regulators in protein synthesis and in catalysis. Due to the abundance of structural primitives and functional diversity, RNA has been utilized for designing nature-defined goals despite its intrinsic chemical instability and lack of technologies. Here, a robust, free-standing RNA hydrogel is developed through a sequential process involving both ligation and rolling circle transcription to form RNA G-quadruplexes, capable of both catalytic activity and enhancing expression of several proteins in sub-compartmentalized, phase-separated translation environments. The observations suggest that this hydrogel will expand RNA research and impact practical RNA principles and applications.


Asunto(s)
G-Cuádruplex , ARN , Hidrogeles , Proteínas/genética , ARN/química
15.
Front Immunol ; 13: 1089369, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713381

RESUMEN

Natural killer (NK) cells are immune effector cells with outstanding features for adoptive immunotherapy. Immune effector cells with chimeric antigen receptors (CARs) are promising targeted therapeutic agents for various diseases. Because tumor cells exhibit heterogeneous antigen expression and lose cell surface antigen expression during malignant progression, many CARs fixed against only one antigen have limited efficacy and are associated with tumor relapse. To expand the utility of CAR-NK cells, we designed a split and universal cotinine-CAR (Cot-CAR) system, comprising a Cot-conjugator and NK92 cells (α-Cot-NK92 cells) engineered with a CAR containing an anti-Cot-specific single-chain variable fragment and intracellular signaling domain. The efficacy of the Cot-CAR system was assessed in vitro using a cytolysis assay against various tumor cells, and its single- or multiple- utility potential was demonstrated using an in vivo lung metastasis model by injecting A549-Red-Fluc cells. The α-Cot-NK92 cells could switch targets, logically respond to multiple antigens, and tune cytolytic activation through the alteration of conjugators without re-engineering. Therefore the universal Cot-CAR system is useful for enhancing specificity and diversity of antigens, combating relapse, and controlling cytolytic activity. In conclusion, this universal Cot-CAR system reveals that multiple availability and controllability can be generated with a single, integrated system.


Asunto(s)
Cotinina , Receptores Quiméricos de Antígenos , Humanos , Cotinina/metabolismo , Recurrencia Local de Neoplasia/tratamiento farmacológico , Células Asesinas Naturales , Inmunoterapia Adoptiva , Antígenos/metabolismo
16.
Immune Netw ; 21(5): e34, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34796038

RESUMEN

Sjögren's syndrome (SS) is an autoimmune disease characterized by dryness of the mouth and eyes. The glandular dysfunction in SS involves not only T cell-mediated destruction of the glands but also autoantibodies against the type 3 muscarinic acetylcholine receptor or aquaporin 5 (AQP5) that interfere with the secretion process. Studies on the breakage of tolerance and induction of autoantibodies to these autoantigens could benefit SS patients. To break tolerance, we utilized a PmE-L peptide derived from the AQP5-homologous aquaporin of Prevotella melaninogenica (PmAqp) that contained both a B cell "E" epitope and a T cell epitope. Repeated subcutaneous immunization of C57BL/6 mice with the PmE-L peptide efficiently induced the production of Abs against the "E" epitope of mouse/human AQP5 (AQP5E), and we aimed to characterize the antigen specificity, the sequences of AQP5E-specific B cell receptors, and salivary gland phenotypes of these mice. Sera containing anti-AQP5E IgG not only stained mouse Aqp5 expressed in the submandibular glands but also detected PmApq and PmE-L by immunoblotting, suggesting molecular mimicry. Characterization of the AQP5E-specific autoantibodies selected from the screening of phage display Ab libraries and mapping of the B cell receptor repertoires revealed that the AQP5E-specific B cells acquired the ability to bind to the Ag through cumulative somatic hypermutation. Importantly, animals with anti-AQP5E Abs had decreased salivary flow rates without immune cell infiltration into the salivary glands. This model will be useful for investigating the role of anti-AQP5 autoantibodies in glandular dysfunction in SS and testing new therapeutics targeting autoantibody production.

17.
Neurooncol Adv ; 3(1): vdab132, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34704036

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most aggressive malignant primary brain tumor in adults. These high-grade gliomas undergo unregulated vascular angiogenesis, migration and cell proliferation allowing the tumor cells to evade cell-cycle checkpoints and apoptotic pathways. The Epidermal growth factor, latrophilin, and seven transmembrane domain-containing 1 on chromosome 1 (ELTD1) is an angiogenic biomarker that is highly expressed in malignant gliomas. Novel treatments targeting ELTD1 with monovalent monoclonal (mmAb) and single chain variable fragment (scFv) antibodies were effective in increasing animal survival, decreasing tumor volume and normalizing the vasculature. Due to the success of our antibody treatments on angiogenesis, this study sought to determine if our anti-ELTD1 treatments affected other aspects of tumorigenesis (cell proliferation, migration, and apoptosis) in a G55 glioma xenograft preclinical mouse model. METHODS: Tumor tissue from untreated, mmAb and scFv anti-ELTD1 treated animals was used to quantify the positivity levels of human mitochondrial antibody, c-MET and Ki-67 for cellular proliferation, migratory markers CD44v6, TRPM8, and BMP2, and cleaved caspase 3 to assess apoptotic activity. RESULTS: This approach demonstrated that our anti-ELTD1 treatments directly affected and decreased the human tumor cells within the tumor region. Additionally, there was a significant decrease in both cellular proliferation and migration due to anti-ETLD1 therapy. Lastly, anti-ELTD1 treatments successfully increased apoptotic activity within the tumor region. CONCLUSION: Our data suggest that anti-ELTD1 therapies would be effective against malignant gliomas by having a multi-focal effect and targeting all four aspects of tumorigenesis.

18.
J Immunol Methods ; 496: 113089, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34181966

RESUMEN

Immune hosts are valuable sources for antibody discovery. To construct in vitro display antibody libraries from immune repertoires, singleplex or multiplex PCR amplification were employed using primers targeting multiple immunoglobulin genes. However, during this process, the B cell receptor repertoire is distorted due to interactions between multiple target genes and primers. To minimize this alternation, we devised a new method for harvesting immunoglobulin genes and tested its performance in rabbit variable heavy chain (VH) and variable kappa light chain (VK) genes. Double-stranded cDNA was synthesized using primers containing V/J gene-specific regions and universal sequence parts for in vitro display. VH and VK gene libraries were obtained through subsequent PCR amplification using primers with universal sequences. Next-generation sequencing analysis confirmed that universal PCR libraries had more diverse VH and VK clonotypes, and a less biased clonal distribution, than conventional singleplex or multiplex gene-specific PCR libraries.


Asunto(s)
Anticuerpos/genética , Biblioteca de Genes , Cadenas Pesadas de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/genética , Cadenas kappa de Inmunoglobulina/genética , Reacción en Cadena de la Polimerasa Multiplex , Receptores de Antígenos de Linfocitos B/inmunología , Animales , Anticuerpos/inmunología , Diversidad de Anticuerpos , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Cadenas Pesadas de Inmunoglobulina/inmunología , Región Variable de Inmunoglobulina/inmunología , Cadenas kappa de Inmunoglobulina/inmunología , Conejos
19.
Biochem Biophys Res Commun ; 545: 33-39, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33535104

RESUMEN

Zika virus (ZIKV) infection in both infants and adults is associated with neurological complications including, but not limited to, microcephaly and Guillain-Barre syndrome. Antibody therapy can be effective against virus infection. We isolated ZIKV envelope domain III-specific neutralizing antibodies (nAbs) from two convalescent patients with ZIKV infection. One antibody, 2F-8, exhibited potent in vitro neutralizing activity against Asian and American strains of ZIKV. To prevent FcγR-mediated antibody-dependent enhancement, we prepared IgG1 with LALA variation. A single dose of 2F-8 in the context of IgG1 or IgG1-LALA prior to or post lethal ZIKV challenge conferred complete protection in mice.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Proteínas del Envoltorio Viral/inmunología , Virus Zika/inmunología , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Antivirales/administración & dosificación , Especificidad de Anticuerpos , Modelos Animales de Enfermedad , Femenino , Humanos , Técnicas In Vitro , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Pruebas de Neutralización , Embarazo , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Proteínas del Envoltorio Viral/química , Virus Zika/química , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/prevención & control
20.
Sci Transl Med ; 13(578)2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33397677

RESUMEN

Stereotypic antibody clonotypes exist in healthy individuals and may provide protective immunity against viral infections by neutralization. We observed that 13 of 17 patients with COVID-19 had stereotypic variable heavy chain (VH) antibody clonotypes directed against the receptor binding domain (RBD) of SARS-CoV-2 spike protein. These antibody clonotypes were composed of immunoglobulin heavy variable 3-53 (IGHV3-53) or IGHV3-66 and immunoglobulin heavy joining 6 (IGHJ6) genes. These clonotypes included IgM, IgG3, IgG1, IgA1, IgG2, and IgA2 subtypes and had minimal somatic mutations, which suggested swift class switching after SARS-CoV-2 infection. The different IGHV chains were paired with diverse light chains resulting in binding to the RBD of SARS-CoV-2 spike protein. Human antibodies specific for the RBD can neutralize SARS-CoV-2 by inhibiting entry into host cells. We observed that one of these stereotypic neutralizing antibodies could inhibit viral replication in vitro using a clinical isolate of SARS-CoV-2. We also found that these VH clonotypes existed in 6 of 10 healthy individuals, with IgM isotypes predominating. These findings suggest that stereotypic clonotypes can develop de novo from naïve B cells and not from memory B cells established from prior exposure to similar viruses. The expeditious and stereotypic expansion of these clonotypes may have occurred in patients infected with SARS-CoV-2 because they were already present.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Cadenas Pesadas de Inmunoglobulina/inmunología , Región Variable de Inmunoglobulina/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Neutralizantes/aislamiento & purificación , COVID-19/sangre , COVID-19/virología , Células Clonales , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoglobulina G/sangre , Mutación/genética , Unión Proteica , Dominios Proteicos , Proteínas Recombinantes/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...