Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Methods ; 19(5): 554-559, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35501386

RESUMEN

DNA-based points accumulation for imaging in nanoscale topography (DNA-PAINT) is a powerful super-resolution microscopy method that can acquire high-fidelity images at nanometer resolution. It suffers, however, from high background and slow imaging speed, both of which can be attributed to the presence of unbound fluorophores in solution. Here we present two-color fluorogenic DNA-PAINT, which uses improved imager probe and docking strand designs to solve these problems. These self-quenching single-stranded DNA probes are conjugated with a fluorophore and quencher at the terminals, which permits an increase in fluorescence by up to 57-fold upon binding and unquenching. In addition, the engineering of base pair mismatches between the fluorogenic imager probes and docking strands allowed us to achieve both high fluorogenicity and the fast binding kinetics required for fast imaging. We demonstrate a 26-fold increase in imaging speed over regular DNA-PAINT and show that our new implementation enables three-dimensional super-resolution DNA-PAINT imaging without optical sectioning.


Asunto(s)
ADN , Colorantes Fluorescentes , Microscopía Fluorescente/métodos
2.
J Neurophysiol ; 106(6): 2865-75, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21900507

RESUMEN

Transient receptor potential melastatin 2 (TRPM2) channels are sensitive to oxidative stress, and their activation can lead to cell death. Although these channels have been extensively studied in expression systems, their role in the brain, particularly in the substantia nigra pars compacta (SNc), remains unknown. In this study, we assessed the expression and functional properties of TRPM2 channels in rat dopaminergic SNc neurons, using acute brain slices. RT-PCR analysis revealed TRPM2 mRNA expression in the SNc region. Immunohistochemistry demonstrated expression of TRPM2 protein in tyrosine hydroxylase-positive neurons. Channel function was tested with whole cell patch-clamp recordings and calcium (fura-2) imaging. Intracellular application of ADP-ribose (50-400 µM) evoked a dose-dependent, desensitizing inward current and intracellular free calcium concentration ([Ca(2+)](i)) rise. These responses were strongly inhibited by the nonselective TRPM2 channel blockers clotrimazole and flufenamic acid. Exogenous application of H(2)O(2) (1-5 mM) evoked a rise in [Ca(2+)](i) and an outward current mainly due to activation of ATP-sensitive potassium (K(ATP)) channels. Inhibition of K(+) conductance with Cs(+) and tetraethylammonium unmasked an inward current. The inward current and/or [Ca(2+)](i) rise were partially blocked by clotrimazole and N-(p-amylcinnamoyl)anthranilic acid (ACA). The H(2)O(2)-induced [Ca(2+)](i) rise was abolished in "zero" extracellular Ca(2+) concentration and was enhanced at higher baseline [Ca(2+)](i), consistent with activation of TRPM2 channels in the cell membrane. These results provide evidence for the functional expression of TRPM2 channels in dopaminergic SNc neurons. Given the involvement of oxidative stress in degeneration of SNc neurons in Parkinson's disease, further studies are needed to determine the pathophysiological role of these channels in the disease process.


Asunto(s)
Clusterina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Regulación de la Expresión Génica/fisiología , Sustancia Negra/citología , Adenosina Difosfato Ribosa/farmacología , Adenosina Trifosfato/farmacología , Animales , Biofisica , Calcio/metabolismo , Clusterina/genética , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Gliburida/farmacología , Peróxido de Hidrógeno/farmacología , Técnicas In Vitro , Isoquinolinas/farmacología , Potenciales de la Membrana/fisiología , Oxidantes/farmacología , Técnicas de Placa-Clamp , Piperidinas/farmacología , Bloqueadores de los Canales de Potasio/farmacología , ARN Mensajero/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Sustancia Negra/metabolismo , Tetraetilamonio/farmacología , Tolbutamida/farmacología , Tirosina 3-Monooxigenasa/metabolismo
3.
Eur J Neurosci ; 30(10): 1849-59, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19912331

RESUMEN

Rotenone is a toxin used to generate animal models of Parkinson's disease; however, the mechanisms of toxicity in substantia nigra pars compacta (SNc) neurons have not been well characterized. We have investigated rotenone (0.05-1 microm) effects on SNc neurons in acute rat midbrain slices, using whole-cell patch-clamp recording combined with microfluorometry. Rotenone evoked a tolbutamide-sensitive outward current (94 +/- 15 pA) associated with increases in intracellular [Ca(2+)] ([Ca(2+)](i)) (73.8 +/- 7.7 nm) and intracellular [Na(+)] (3.1 +/- 0.6 mm) (all with 1 microm). The outward current was not affected by a high ATP level (10 mm) in the patch pipette but was decreased by Trolox. The [Ca(2+)](i) rise was abolished by removing extracellular Ca(2+), and attenuated by Trolox and a transient receptor potential M2 (TRPM2) channel blocker, N-(p-amylcinnamoyl) anthranilic acid. Other effects included mitochondrial depolarization (rhodamine-123) and increased mitochondrial reactive oxygen species (ROS) production (MitoSox), which was also abolished by Trolox. A low concentration of rotenone (5 nm) that, by itself, did not evoke a [Ca(2+)](i) rise resulted in a large (46.6 +/- 25.3 nm) Ca(2+) response when baseline [Ca(2+)](i) was increased by a 'priming' protocol that activated voltage-gated Ca(2+) channels. There was also a positive correlation between 'naturally' occurring variations in baseline [Ca(2+)](i) and the rotenone-induced [Ca(2+)](i) rise. This correlation was not seen in non-dopaminergic neurons of the substantia nigra pars reticulata (SNr). Our results show that mitochondrial ROS production is a key element in the effect of rotenone on ATP-gated K(+) channels and TRPM2-like channels in SNc neurons, and demonstrate, in these neurons (but not in the SNr), a large potentiation of rotenone-induced [Ca(2+)](i) rise by a small increase in baseline [Ca(2+)](i).


Asunto(s)
Calcio/metabolismo , Dopamina/metabolismo , Insecticidas/farmacología , Neuronas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Rotenona/farmacología , Sustancia Negra/citología , Adenosina Trifosfato/farmacología , Análisis de Varianza , Animales , Animales Recién Nacidos , Antioxidantes/farmacología , Fenómenos Biofísicos/efectos de los fármacos , Biofisica , Cromanos/farmacología , Cinamatos/farmacología , Clusterina/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Estimulación Eléctrica , Femenino , Ácido Flufenámico/farmacología , Homeostasis/efectos de los fármacos , Técnicas In Vitro , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Neuronas/metabolismo , Técnicas de Placa-Clamp/métodos , Ratas , Ratas Wistar , Sodio/metabolismo , Sustancia Negra/efectos de los fármacos , Tolbutamida/farmacología , ortoaminobenzoatos/farmacología
4.
Brain Res ; 1077(1): 187-99, 2006 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-16483552

RESUMEN

During a period of acute ischemia in vivo or oxygen-glucose deprivation (OGD) in vitro, CA1 neurons depolarize, swell and become overloaded with calcium. Our aim was to test the hypothesis that the initial responses to OGD are at least partly due to transient receptor potential (TRP) channel activation. As some TRP channels are temperature-sensitive, we also compared the effects of pharmacological blockade of the channels with the effects of reducing temperature. Acute hippocampal slices (350 mum) obtained from Wistar rats were submerged in ACSF at 36 degrees C. CA1 neurons were monitored electrophysiologically using extracellular, intracellular or whole-cell patch-clamp recordings. Cell swelling was assessed by recording changes in relative tissue resistance, and changes in intracellular calcium were measured after loading neurons with fura-2 dextran. Blockers of TRP channels (ruthenium red, La3+, Gd3+, 2-APB) or lowering temperature by 3 degrees C reduced responses to OGD. This included: (a) an increased delay to negative shifts of extracellular DC potential; (b) reduction in rate of the initial slow membrane depolarization, slower development of OGD-induced increase in cell input resistance and slower development of whole-cell inward current; (c) reduced tissue swelling; and (d) a smaller rise in intracellular calcium. Mild hypothermia (33 degrees C) and La3+ or Gd3+ (100 microM) showed an occlusion effect when delay to extracellular DC shifts was measured. Expression of TRPM2/TRPM7 (oxidative stress-sensitive) and TRPV3/TRPV4 (temperature-sensitive) channels was demonstrated in the CA1 subfield with RT-PCR. These results indicate that TRP or TRP-like channels are activated by cellular stress and contribute to ischemia-induced membrane depolarization, intracellular calcium accumulation and cell swelling. We also hypothesize that closing of some TRP channels (TRPV3 and/or TRPV4) by lowering temperature may be partly responsible for the neuroprotective effect of hypothermia.


Asunto(s)
Edema Encefálico/fisiopatología , Isquemia Encefálica/fisiopatología , Hipocampo/metabolismo , Neuronas/metabolismo , Canales de Potencial de Receptor Transitorio/fisiología , Enfermedad Aguda , Animales , Edema Encefálico/etiología , Isquemia Encefálica/complicaciones , Calcio/metabolismo , Femenino , Glucosa/deficiencia , Glucosa/metabolismo , Hipocampo/citología , Hipocampo/fisiopatología , Masculino , Potenciales de la Membrana/fisiología , Neuronas/citología , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar
5.
J Neurophysiol ; 94(5): 3069-80, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16014800

RESUMEN

Changes in temperature of up to several degrees have been reported in different brain regions during various behaviors or in response to environmental stimuli. We investigated temperature sensitivity of dopaminergic neurons of the rat substantia nigra pars compacta (SNc), an area important for motor and emotional control, using a combination of electrophysiological techniques, microfluorometry, and RT-PCR in brain slices. Spontaneous neuron firing, cell membrane potential/currents, and intracellular Ca2+ level ([Ca2+]i) were measured during cooling by < or =10 degrees and warming by < or =5 degrees from 34 degrees C. Cooling evoked slowing of firing, cell membrane hyperpolarization, increase in cell input resistance, an outward current under voltage clamp, and a decrease of [Ca2+]i. Warming induced an increase in firing frequency, a decrease in input resistance, an inward current, and a rise in [Ca2+]i. The cooling-induced current, which reversed in polarity between -5 and -17 mV, was dependent on extracellular Na+. Cooling-induced whole cell currents and changes in [Ca2+]i were attenuated by 79% in the presence of 2-aminoethoxydiphenylborane (2-APB; 200 microM), and the outward current was reduced by 20% with ruthenium red (100 microM). RT-PCR conducted with tissue punches containing the SNc revealed mRNA expression for TRPV3 and TRPV4 channels, known to be activated in expression systems by temperature changes within the physiological range. 2-APB, a TRPV3 modulator, increased baseline [Ca2+]i, whereas 4alphaPDD, a TRPV4 agonist, increased spontaneous firing in 7 of 14 neurons tested. We conclude that temperature-gated TRPV3 and TRPV4 cationic channels are expressed in nigral dopaminergic neurons and are constitutively active in brain slices at near physiological temperatures, where they affect the excitability and calcium homeostasis of these neurons.


Asunto(s)
Potenciales de Acción/fisiología , Dopamina/metabolismo , Neuronas Aferentes/fisiología , Sustancia Negra/fisiología , Canales Catiónicos TRPV/metabolismo , Sensación Térmica/fisiología , Animales , Umbral Diferencial/fisiología , Ratas , Ratas Wistar
6.
Eur J Neurosci ; 20(5): 1219-30, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15341594

RESUMEN

Acetylcholine, acting through muscarinic receptors, modulates the excitability of striatal medium spiny neurones. However, the underlying membrane conductances and intracellular signalling pathways have not been fully determined. Our aim was to characterize excitatory effects mediated by M1 muscarinic acetylcholine receptors in these neurones using whole-cell patch-clamp recordings in brain slices of postnatal rats. Under voltage-clamp, muscarine evoked an inward current associated with an increase in cell membrane resistance. The current, which reversed at -85 mV, was sensitive to the M1 receptor antagonist pirenzepine. Blocking the potassium conductance attenuated the response and the residual current was further reduced by ruthenium red (50 microm) and reversed at +15 mV. Simultaneous recordings from cholinergic interneurones and medium spiny neurones in conjunction with spike-triggered averaging revealed small unitary excitatory postsynaptic currents in four of 39 cell pairs tested. The muscarine-induced inward current was attenuated by a phospholipase C (PLC) inhibitor, U73122, but not by a protein kinase C inhibitor, chelerythrine, or by the intracellular calcium chelator 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetra-acetic acid, suggesting that the current was associated with PLC in a protein kinase C- and Ca2+ -independent manner. The phosphatidylinositol 4-kinase inhibitor wortmannin (10 microm) reduced the recovery of the inward current, indicating that the recovery process was dependent on the removal of diacylglycerol and/or inositol 1,4,5 triphosphate or resynthesis of phospholipid phosphatidylinositol 4,5-bisphophate. Ratiometric measurement of intracellular calcium after cell loading with fura-2 demonstrated a muscarine-induced increase in calcium signal that originated mainly from intracellular stores. Thus, the cholinergic excitatory effect in striatal medium spiny neurones, which is important in motor disorders associated with altered cholinergic transmission in the striatum such as Parkinson's disease, is mediated through M1 receptors and the PLC-dependent pathway.


Asunto(s)
Potenciales de Acción/fisiología , Cuerpo Estriado/metabolismo , Neuronas/metabolismo , Receptores Muscarínicos/metabolismo , Sistemas de Mensajero Secundario/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Cuerpo Estriado/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Agonistas Muscarínicos/farmacología , Neuronas/efectos de los fármacos , Ratas , Ratas Wistar , Sistemas de Mensajero Secundario/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...