Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Cell ; 19(12): 5181-92, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18829867

RESUMEN

How scaffold proteins integrate signaling pathways with cytoskeletal components to drive axon outgrowth is not well understood. We report here that the multidomain scaffold protein Plenty of SH3s (POSH) regulates axon outgrowth. Reduction of POSH function by RNA interference (RNAi) enhances axon outgrowth in differentiating mouse primary cortical neurons and in neurons derived from mouse P19 cells, suggesting POSH negatively regulates axon outgrowth. Complementation analysis reveals a requirement for the third Src homology (SH) 3 domain of POSH, and we find that the actomyosin regulatory protein Shroom3 interacts with this domain of POSH. Inhibition of Shroom3 expression by RNAi leads to increased process lengths, as observed for POSH RNAi, suggesting that POSH and Shroom function together to inhibit process outgrowth. Complementation analysis and interference of protein function by dominant-negative approaches suggest that Shroom3 recruits Rho kinase to inhibit process outgrowth. Furthermore, inhibition of myosin II function reverses the POSH or Shroom3 RNAi phenotype, indicating a role for myosin II regulation as a target of the POSH-Shroom complex. Collectively, these results suggest that the molecular scaffold protein POSH assembles an inhibitory complex that links to the actin-myosin network to regulate neuronal process outgrowth.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Axones/metabolismo , Proteínas del Citoesqueleto/metabolismo , Neuronas/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Axones/ultraestructura , Células Cultivadas , Corteza Cerebral/citología , Proteínas del Citoesqueleto/genética , Prueba de Complementación Genética , Humanos , Ratones , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Neuronas/citología , Miosina Tipo IIA no Muscular/genética , Miosina Tipo IIA no Muscular/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Interferencia de ARN , Técnicas del Sistema de Dos Híbridos , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo
2.
Exp Cell Res ; 314(14): 2618-33, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18619591

RESUMEN

MicroRNAs (miRNAs) are small RNAs with diverse regulatory roles. The miR-124 miRNA is expressed in neurons in the developing and adult nervous system. Here we show that overexpression of miR-124 in differentiating mouse P19 cells promotes neurite outgrowth, while blocking miR-124 function delays neurite outgrowth and decreases acetylated alpha-tubulin. Altered neurite outgrowth also was observed in mouse primary cortical neurons when miR-124 expression was increased, or when miR-124 function was blocked. In uncommitted P19 cells, miR-124 expression led to disruption of actin filaments and stabilization of microtubules. Expression of miR-124 also decreased Cdc42 protein and affected the subcellular localization of Rac1, suggesting that miR-124 may act in part via alterations to members of the Rho GTPase family. Furthermore, constitutively active Cdc42 or Rac1 attenuated neurite outgrowth promoted by miR-124. To obtain a broader perspective, we identified mRNAs downregulated by miR-124 in P19 cells using microarrays. mRNAs for proteins involved in cytoskeletal regulation were enriched among mRNAs downregulated by miR-124. A miR-124 variant with an additional 5' base failed to promote neurite outgrowth and downregulated substantially different mRNAs. These results indicate that miR-124 contributes to the control of neurite outgrowth during neuronal differentiation, possibly by regulation of the cytoskeleton.


Asunto(s)
Diferenciación Celular , MicroARNs/metabolismo , Neuritas/metabolismo , Acetilación , Citoesqueleto de Actina/metabolismo , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Northern Blotting , Células Cultivadas , Corteza Cerebral/citología , Regulación hacia Abajo/genética , Femenino , Humanos , Ratones , MicroARNs/genética , Microtúbulos/metabolismo , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Transporte de Proteínas , Tubulina (Proteína)/metabolismo , Regulación hacia Arriba/genética , Xenopus , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo
3.
Dev Dyn ; 235(9): 2538-48, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16736490

RESUMEN

We have developed an in situ hybridization procedure for the detection of microRNAs (miRNAs) in tissue sections from mouse embryos and adult organs. The method uses highly specific washing conditions for RNA oligonucleotide probes conjugated to a fluorescein hapten. We show that this method detects predominantly mature miRNAs rather than the miRNA precursors or primary transcripts. We have determined expression patterns for several miRNAs expressed in the developing and adult nervous system, including miR-124a, miR-9, miR-92, and miR-204. Whereas miR-124a is expressed in neurons, miR-9 is expressed in neural progenitors and some neurons, and miR-204 is expressed in the choroid plexus, retinal pigment epithelium, and ciliary body. miR-204 is located in an intron of the TRPM3 gene, and the TRPM3 mRNA is coexpressed with miR-204 in the choroid plexus. We also find that primary transcripts for miR-124a and miR-9 genes are expressed in patterns similar to their respective mature miRNAs. The ability to visualize expression of specific miRNAs in embryos and tissues should aid studies on miRNA function.


Asunto(s)
MicroARNs/genética , Animales , Secuencia de Bases , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Línea Celular , Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Desarrollo Embrionario/genética , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Femenino , Fluoresceína , Expresión Génica , Hibridación in Situ , Ratones , Sondas de Oligonucleótidos/genética , Oligorribonucleótidos/genética , Embarazo
4.
Nucleic Acids Res ; 34(7): e53, 2006 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-16614444

RESUMEN

Vector-based RNA interference (RNAi) has emerged as a valuable tool for analysis of gene function. We have developed new RNA polymerase II expression vectors for RNAi, designated SIBR vectors, based upon the non-coding RNA BIC. BIC contains the miR-155 microRNA (miRNA) precursor, and we find that expression of a short region of the third exon of mouse BIC is sufficient to produce miR-155 in mammalian cells. The SIBR vectors use a modified miR-155 precursor stem-loop and flanking BIC sequences to express synthetic miRNAs complementary to target RNAs. Like RNA polymerase III driven short hairpin RNA vectors, the SIBR vectors efficiently reduce target mRNA and protein expression. The synthetic miRNAs can be expressed from an intron, allowing coexpression of a marker or other protein with the miRNAs. In addition, intronic expression of a synthetic miRNA from a two intron vector enhances RNAi. A SIBR vector can express two different miRNAs from a single transcript for effective inhibition of two different target mRNAs. Furthermore, at least eight tandem copies of a synthetic miRNA can be expressed in a polycistronic transcript to increase the inhibition of a target RNA. The SIBR vectors are flexible tools for a variety of RNAi applications.


Asunto(s)
Vectores Genéticos , MicroARNs/genética , Interferencia de ARN , ARN Polimerasa II/metabolismo , Animales , Genes Reporteros , Humanos , Intrones , Luciferasas/análisis , Luciferasas/genética , Ratones , MicroARNs/biosíntesis , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...