Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 606(Pt 1): 709-718, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34416460

RESUMEN

Advanced microwave absorption (MA) materials have attracted widespread attention to meet the challenges of electromagnetic (EM) pollution. Herein, MgFe2O4/MgO/C fibers were successfully prepared via electrospinning technology and carbonization, and their surfaces were coated by MoS2 via hydrothermal method. The EM wave absorption performance of composites was enhanced due to the introduction of MoS2. The results showed that the EM wave absorption performance of MgFe2O4/MgO/C could not meet the requirements due to low dielectric loss and poor impedance matching. The performance of the composites was improved after coating of MoS2, which showed the strong wave absorption capability and the broad absorption bandwidth. The optimal reflection loss (RL) is -56.94 dB at 9.5 GHz and the effective absorption bandwidth is 3.9 GHz (8.08-11.98 GHz) with a thickness of 2.7 mm. The excellent MA performance can be mainly attributed to excellent synergistic effect between MgFe2O4/MgO/C and MoS2. Furthermore, MoS2 also contributes to dielectric loss and ideal impedance matching. MgFe2O4/MgO/C@MoS2 composites may be utilized for lightweight and high-efficient MA materials.

2.
Dalton Trans ; 50(33): 11640-11649, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34357366

RESUMEN

New types of electromagnetic (EM) wave absorption materials with a light weight, strong absorption ability and wide absorption frequency have been widely explored. Nevertheless, it is still an intractable challenge to design the structure of the materials and rationalize multiple components. In this work, one-dimensional (1D) CoFe2/C@MoS2 composites were prepared via electrospinning technology, high-temperature carbonization and hydrothermal method. SEM and TEM images reveal that the as-prepared CoFe2/C fibers with a 1D structure are well coated with MoS2. The excellent absorption performance of the composites is mainly attributed to the 1D structure and the ideal impedance matching. CoFe2/C@MoS2 composites show strong absorption ability with an optimal reflection loss (RL) of -66.8 dB (13.28 GHz) at a matching thickness of 2.12 mm. Meanwhile, the composite possesses an effective absorption frequency range between 10.70 and 16.02 GHz with a bandwidth of 5.32 GHz. These results indicate that CoFe2/C@MoS2 composites will become promising lightweight and highly efficient MA materials.

3.
J Colloid Interface Sci ; 602: 602-611, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34146948

RESUMEN

Nowadays, ferrites/carbon fibers have attracted considerable attention as microwave absorption materials (MA) due to the synergistic effect between dielectric and magnetic loss. Herein, the ZnFe2O4/C fibers were fabricated via electrospinning and calcination methods, and then polypyrrole (PPy) successfully coated on the fibers via oxidative polymerization. The ZnFe2O4/C@PPy composites exhibit enhanced EM wave absorption performance with the loading of 25 wt%. The optimal reflection loss (RL) value is up to -66.34 dB (13.80 GHz) and effective absorption bandwidth (EAB) is 5.74 GHz (11.78-17.52 GHz) with a matching thickness of 1.93 mm. Besides, high-efficient absorption performance of the ZnFe2O4/C@PPy composites is mainly attributed to the dielectric loss and ideal impedance matching. This study reveals a novel approach to development of ferrites/carbon fibers coated with PPy, and the ZnFe2O4/C@PPy composites exhibit great potential application as the materials with high-efficient absorption properties.

4.
J Colloid Interface Sci ; 600: 209-218, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34030004

RESUMEN

Metal-organic framework (MOF) materials have caused widespread concerns in the field of microwave absorption, due to the unique microstructure and electronic state. Herein, the CoZn/C@MoS2@polypyrrole (PPy) composites were prepared through MOF self-template method. The MoS2 sheets and PPy shell incorporated for optimizing impedance matching of two-dimensional (2D) CoZn/C composites. The introduction of MoS2 sheets and PPy shell endowed the composites with enhanced microwave absorption. The as-prepared CoZn/C@MoS2@PPy composites showed a minimum reflection loss (RL) of -49.18 dB with the thickness of 1.5 mm. In addition, the effective absorption bandwidth (EAB, RL values exceeding -10 dB) covered 4.56 GHz, which showed greater performances than CoZn/C composites under a lower thickness (<2 mm). This work not only provides a facile route for fabricating MOF-derived carbon-based composites as microwave absorbers, but also broadens the application of MOF materials.

5.
J Colloid Interface Sci ; 600: 90-98, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34004433

RESUMEN

In this work, one-dimensional (1D) ZnFe2O4@carbon@MoS2/FeS2 composites were synthesized by hydrothermal method, magnetic-field-induced distillation-precipitation polymerization and high-temperature carbonization. The structure, morphology, composition, magnetic performance and electromagnetic (EM) wave absorbing properties of the composites were systematically studied. The composites show strong microwave absorption (MA) capacity with a minimum reflection loss (RLmin) value of -52.5 dB at 13.2 GHz, and have an effective absorption frequency range of 10.10-15.08 GHz with a bandwidth of 4.98 GHz when the thickness is 2.23 mm. It is expected that as-synthesized 1D ZnFe2O4@carbon@MoS2/FeS2 composites can be a promising EM wave absorption material.

6.
Int J Electron Commun ; 120: 153207, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32322160

RESUMEN

This article presents a novel single-feed circularly polarized patch antenna for dual-band (2.6 and 3.4 GHz) applications. Details of the design procedure and design considerations of the proposed antenna are described. The novelties of the proposed antenna are counted by (i) a meaningful Jia-shaped patch used as the primary radiator; (ii) a 3D L-shaped feeding probe used to excite the stacked patches so that the near degenerate-modes are excited at the desired dual band; (iii) down-tilt beams achieved that are particularly suitable for wall-mount base-stations. The measured 3-dB axial-ratio bandwidths are 2.41-2.61 GHz and 3.25-3.42 GHz, where the maximum gains are recorded as 7.3 and 6.3 dBic, respectively. Methods for the adjustment of band ratio down to 1.18 are discussed. The overall antenna size is 100 × 100 × 12.8 mm3.

7.
Sensors (Basel) ; 18(9)2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30205514

RESUMEN

Lead-zirconate-titanate (PZT) nanoscale powder was first synthesized by the sol-gel method, then PZT and 0⁻3 type PZT/chrysotile fiber (CSF)/cement composite (PZTCC) wafers were fabricated after grind-mixing PZT powder with strontium carbonate and/or cement, ductile CSF in tandem with press-sintered process, respectively. The crystal structure (XRD), microstructure (SEM), piezoelectric properties after surface silver penetration, and polarization of the PZT and PZTCC wafer were investigated. Furthermore, self-sensing responses under either impulse or cyclic loading and micro-hardness toughness of PZTCC were also investigated. Results show that the incorporation of CSF and cement admixture weakens the perovskite crystalline peak of PZTCC; reduces the corresponding piezoelectric coefficient from 119.2 pC/N to 32.5 pC/N; but effectively bridges the gap on the toughness between PZTCC and concrete since the corresponding microhardness with 202.7 MPa of PZTCC is close to that of concrete. A good linear and fast electrical response against either impulse or cyclic loading of the PZTCC is achieved with their respective sensitivity, linearity, and repeatability to 1.505 mV/N, 2.42%, and 2.11%. The sensing responses and toughness of PZTCC is encouraging as an intrinsic piezoelectric sensor for real-time health monitoring of ductile concrete structures.

8.
Sensors (Basel) ; 17(12)2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29211051

RESUMEN

This research article presents dual-frequency correlation models for predicting the growth of elasticity and flexural strength of engineered cementitious composites (ECCs) using microwave nondestructive inspection technique. Parallel measurements of microwave properties and mechanical properties of ECC specimens were firstly undertaken in the sense of cross-disciplinary experiments. Regression models were developed via means of nonlinear regression to the measured data. The purpose of the study is: (i) to monitor the flexural strength and elasticity growth; and (ii) to predict their mature values under the influence of different initial water contents, via microwave effective conductance at early ages. It has been demonstrated that both the modulus of rupture (MOR) and modulus of elasticity (MOE) can be accurately modeled and correlated by microwave conductance using exponential functions. The moduli developed as a function of conductance whereas the regression coefficient exhibited a linear relation with water-to-binder ratio. These findings have highlighted the effectiveness of the microwave non-destructive technique in inspecting the variation of liquid phase morphology of ECCs. The dual-frequency correlation can be used for structural health monitoring, which is not only for prediction but also provides a means of verification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...